首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aging of T cell memory is often considered in terms of senescence, a process viewed as decay and loss of memory T cells. How senescence would affect memory is a function of the initial structure of the memory repertoire and whether the clonotypes that make up the repertoire decay at random. We examine this issue using the T cell memory generated to the conserved influenza A epitope M1(58-66), which induces a strong, focused, but polyclonal CD8 T cell response in HLA-A2 individuals. We analyzed the CD8 T cell memory repertoires in eight healthy middle-aged and eight healthy older blood donors representing an average age difference of ~ 27 y. Although the repertoires show broadly similar clonotype distributions, the number of observable clonotypes decreases significantly. This decrease disproportionally affects low-frequency clonotypes. Rank frequency analysis shows the same two-component clonotype distribution described earlier for these repertoires. The first component includes lower frequency clonotypes for which distribution can be described by a power law. The slope of this first component is significantly steeper in the older cohort. Generating a representative repertoire for each healthy cohort allowed agent-based modeling of the aging process. Interestingly, simple senescence of middle-aged repertoires is insufficient to describe the older clonotype distribution. Rather, a selective clonotype expansion must be included to achieve the best fit. We propose that responses to periodic virus exposure may drive such expansion, ensuring that the remaining clonotypes are optimized for continued protection.  相似文献   

2.
The CD8 T cell memory response to the HLA-A2-restricted influenza epitope M1(58-66) can be an instructive model of immune memory to a nonevolving epitope of a frequently encountered pathogen that undergoes clearance. This memory repertoire can be complex, composed of a large number of clonotypes represented at low copy numbers, while maintaining a focus on the use of VB17 T cell receptors with identified Ag recognition motifs. Such a repertoire structure might provide a panoply of clonotypes whose differential avidity for the epitope would allow responses under varying antigenic loads. This possibility was tested experimentally by characterizing the responding repertoire in vitro while varying influenza Ag concentration over five orders of magnitude. At higher and lower Ag concentrations there was increased cell death, yet a focused but diverse response could still be observed. Thus, one of the characteristics of complex memory repertoires is to provide effector function at extremes of Ag load, a characteristic that is not generally considered in vaccination development but may be important in measuring its efficacy.  相似文献   

3.
How the naive T cell repertoire arises and forms the memory repertoire is still poorly understood. This relationship was analyzed by taking advantage of the focused TCR usage in HLA-A2-restricted CD8 memory T cell responses to influenza M1(58-66). We analyzed rearranged BV19 genes from CD8 single-positive thymocytes, a surrogate for the naive repertoire, from 10 HLA-A2 individuals. CDR3 amino acid sequences associated with response to influenza were observed at higher frequencies than expected by chance, an indicator of preselection. We propose that a rearrangement mechanism involving long P-nucleotide addition from the J2.7 region explains part of this increase. Special rearrangement mechanisms can result in identical T cells in different individuals, referred to as public responses. Indeed, the rearrangements utilizing long P nucleotide additions were commonly observed in the response to the M1(58-66) epitope in 30 HLA-A2 middle-aged adults. Thus, in addition to negative and positive selection, special rearrangement mechanisms may influence the composition of the naive repertoire, resulting in more robust responses to a pathogen in some individuals.  相似文献   

4.
Memory T cells cross-reactive with epitopes encoded by related or even unrelated viruses may alter the immune response and pathogenesis of infection by a process known as heterologous immunity. Because a challenge virus epitope may react with only a subset of the T cell repertoire in a cross-reactive epitope-specific memory pool, the vigorous cross-reactive response may be narrowly focused, or oligoclonal. We show in this article, by examining human T cell cross-reactivity between the HLA-A2-restricted influenza A virus-encoded M1(58-66) epitope (GILGFVFTL) and the dissimilar Epstein-Barr virus-encoded BMLF1(280-288) epitope (GLCTLVAML), that, under some conditions, heterologous immunity can lead to a significant broadening, rather than a narrowing, of the TCR repertoire. We suggest that dissimilar cross-reactive epitopes might generate a broad, rather than a narrow, T cell repertoire if there is a lack of dominant high-affinity clones; this hypothesis is supported by computer simulation.  相似文献   

5.
HLA-A2-restricted CTL responses to immunodominant HIV-1 epitopes do not appear to be very effective in the control of viral replication in vivo. In this study, we studied human CD8+ T cell responses to the subdominant HLA-A2-restricted epitope TV9 (Gag p24(19-27), TLNAWVKVV) to explore the possibility of increasing its immune recognition. We confirmed in a cohort of 313 patients, infected by clade B or clade C viruses, that TV9 is rarely recognized. Of interest, the functional sensitivity of the TV9 response can be relatively high. The potential T cell repertoires for TV9 and the characteristics of constituent clonotypes were assessed by ex vivo priming of circulating CD8+ T cells from healthy seronegative donors. TV9-specific CTLs capable of suppressing viral replication in vitro were readily generated, suggesting that the cognate T cell repertoire is not limiting. However, these cultures contained multiple discrete populations with a range of binding avidities for the TV9 tetramer and correspondingly distinct functional dependencies on the CD8 coreceptor. The lack of dominant clonotypes was not affected by the stage of maturation of the priming dendritic cells. Cultures primed by dendritic cells transduced to present endogenous TV9 were also incapable of clonal maturation. Thus, a diffuse TCR repertoire appeared to be an intrinsic characteristic of TV9-specific responses. These data indicate that subdominance is not a function of poor immunogenicity, cognate TCR repertoire availability, or the potential avidity properties thereof, but rather suggest that useful responses to this epitope are suppressed by competing CD8+ T cell populations during HIV-1 infection.  相似文献   

6.
Detailed assessment of how the structural properties of T cell receptors affect clonal repertoires of Ag-specific cells is a prerequisite for a better understanding of human antiviral immunity. Herein we examine the alpha TCR repertoires of CD8 T cells reactive against the influenza A viral epitope M1(58-66), restricted by HLA-A2.1. Using molecular cloning, we systematically studied the impact of alpha-chain usage in the formation of T cell memory and revealed that M1(58-66)-specific, clonally diverse VB19 T cells express alpha-chains encoded by multiple AV genes with different CDR3 sizes. A unique feature of these alpha TCRs was the presence of CDR3 fitting to an AGA(G(n))GG-like amino acid motif. This pattern was consistent over time and among different individuals. Further molecular assessment of human CD4(+)CD8(-) and CD4(-)CD8(+) thymocytes led to the conclusion that the poly-Gly/Ala runs in CDR3alpha were a property of immune, but not naive, repertoires and could be attributed to influenza exposure. Repertoires of T cell memory are discussed in the context of clonal diversity, where poly-Gly/Ala runs in the CDR3 of alpha- and beta-chains might provide high levels of TCR flexibility during Ag recognition while gene-encoded CDR1 and CDR2 contribute to the fine specificity of the TCR-peptide MHC interaction.  相似文献   

7.
The repertoire of human cytotoxic T-lymphocytes (CTL) in response to influenza A viruses has been shown to be directed towards multiple epitopes, with a dominant response to the HLA-A2-restricted M1(58-66) epitope. These studies, however, were performed with peripheral blood mononuclear cells (PBMC) of individuals selected randomly with respect to HLA phenotype or selected for the expression of one HLA allele without considering an influence of other HLA molecules. In addition, little information is available on the influence of HLA makeup on the overall CTL response against influenza viruses. Here, the influenza A virus-specific CTL response was investigated in groups of HLA-A and -B identical individuals. Between groups the individuals shared two or three of the four HLA-A and -B alleles. After in vitro stimulation of PBMC with influenza virus, the highest CTL activity was found in HLA-A2(+) donors. A similar pattern was observed for the precursor frequency of virus-specific CTL (CTLp) ex vivo, with a higher CTLp frequency in HLA-A2-positive donors than in HLA-A2-negative donors, which were unable to recognize the immunodominant M1(58-66) epitope. In addition, CTL activity and frequency of CTLp for the individual influenza virus epitopes were determined. The frequency of CTLp specific for the HLA-B8-restricted epitope NP(380-388) was threefold lower in HLA-B27-positive donors than in HLA-B27-negative donors. In addition, the frequency of CTLp specific for the HLA-A1-restricted epitope NP(44-52) was threefold higher in HLA-A1-, -A2-, -B8-, and -B35-positive donors than in other donors, which was confirmed by measuring the CTL activity in vitro. These findings indicate that the epitope specificity of the CTL response is related to the phenotype of the other HLA molecules. Furthermore, the magnitude of the influenza virus-specific CTL response seems dependent on the HLA-A and -B phenotypes.  相似文献   

8.
The current vaccination strategy against influenza is to induce the production of antibodies directed against surface antigens of viruses. However, the frequent changes in the surface antigens of influenza viruses allow the viruses to avoid antibody-mediated immunity. On the other hand, it is known that cytotoxic T-lymphocyte (CTL) populations directed against internal antigens of influenza A virus are broadly cross-reactive to influenza virus subtypes. In the present study, liposomal conjugates with CTL epitope peptides derived from highly conserved internal antigens of influenza viruses were evaluated for their ability to protect against infection with influenza viruses. Liposomal conjugates with peptide M1 58-66, an HLA-A*0201-binding CTL epitope present within the amino-acid sequence of the M1 coding region, successfully induced antigen-specific CD8+ T-cells and CTLs in HLA-A*0201-transgenic mice. Moreover, after nasal infection with either the H1N1 or H3N2 virus, viral replication in the lung was significantly inhibited in the immunized mice. These protective activities lasted at least 6 months after the immunization. Thus, these results suggest that liposome-coupled CTL epitope peptides derived from highly conserved internal antigens of influenza viruses might be applicable to the development of vaccines that induce protection against infection with heterosubtypic influenza viruses.  相似文献   

9.
Influenza virus matrix protein-derived peptides were synthesized based on the amino acid motifs for HLA-A2 bound self peptides. Among these peptides a nonamer (amino acids 58 through 66: G I L G F V F T L) was found to be 100 to 1000 times more effective than the commonly used peptide 57-68 (K G I L G F V F T L T V) in sensitizing HLA-A2+ target cells to lysis by influenza virus specific cytotoxic T lymphocytes. The sensitizing activity of the 12-mer 57-68 was not due to contamination with shorter and more active peptides. Intracellular expression of peptide 58-66 (mediated by a stable expression plasmid with DNA coding for this peptide) also sensitized HLA-A2+ cells to lysis. Peptide 58-66 stimulated human PBMC to generate CTL that recognized peptides 58-66 and 57-68 in association with HLA-A2.  相似文献   

10.
Degeneracy of the TCR repertoire might allow for cross-recognition of epitope variants. However, it is unclear how the first encounter with HIV Ags determines recognition of emerging epitope variants. This question remains crucial in the choice of HIV vaccine sequences given the virus variability. In this study, we individualized nine natural mutations within an HIV-Nef(180-189) epitope selected from several HIV-infected individuals. These variants of Nef(180-189) sequence display slightly different HLA-A2 binding capacities and stabilities and we have shown that only two induced a strong CTL response in vivo in HLA-A2 transgenic mice after a single injection. We demonstrated that priming with these two immunogenic variants generated a specific pattern of cross-reactive CTL repertoire directed against poorly immunogenic peptides. Thus, the range of peptide variants recognized by HIV-specific CTL depends upon the Ag encountered during primary immunization of CD8 lymphocytes. These data have practical implications in the development of cross-reactive vaccines against HIV.  相似文献   

11.
The repertoires of CD1- and MHC-restricted T cells are complementary, permitting the immune recognition of both lipid and peptide Ags, respectively. To compare the breadth of the CD1-restricted and MHC-restricted T cell repertoires, we evaluated T cell responses against lipid and peptide Ags of mycobacteria in leprosy, comparing tuberculoid patients, who are able to restrict the pathogen, and lepromatous patients, who have disseminated infection. The striking finding was that in lepromatous leprosy, T cells did not efficiently recognize lipid Ags from the leprosy pathogen, Mycobacterium leprae, or the related species, Mycobacterium tuberculosis, yet were able to efficiently recognize peptide Ags from M. tuberculosis, but not M. leprae. To identify a mechanism for T cell unresponsiveness against mycobacterial lipid Ags in lepromatous patients, we used T cell clones to probe the species specificity of the Ags recognized. We found that the majority of M. leprae-reactive CD1-restricted T cell clones (92%) were cross-reactive for multiple mycobacterial species, whereas the majority of M. leprae-reactive MHC-restricted T cells were species specific (66%), with a limited number of T cell clones cross-reactive (34%) with M. tuberculosis. In comparison with the MHC class II-restricted T cell repertoire, the CD1-restricted T cell repertoire is limited to recognition of cross-reactive Ags, imparting a distinct role in the host response to immunologically related pathogens.  相似文献   

12.
The immunologic mechanisms underlying the faster progression of hepatitis C virus (HCV) disease in the presence of human immunodeficiency virus (HIV) coinfection are not clearly understood. T-cell cross-reactivity between HCV and influenza virus-specific epitopes has been associated with rapid progression of HCV disease (S. Urbani, B. Amadei, P. Fisicaro, M. Pilli, G. Missale, A. Bertoletti, and C. Ferrari, J. Exp. Med. 201:675-680, 2005). We asked whether T-cell cross-reactivity between HCV and HIV could exist during HCV/HIV coinfection and affect pathogenesis. Our search for amino acid sequence homology between the HCV and HIV proteomes revealed two similar HLA-A2-restricted epitopes, HIV-Gag (SLYNTVATL [HIV-SL9]) and HCV-NS5b (ALYDVVSKL [HCV-AL9]). We found that 4 out of 20 HLA-A2-positive (HLA-A2(+)) HIV-infected individuals had CD8(+) T cells that recognized both the HIV-SL9 and HCV-AL9 epitopes. However, the AL9 epitope was generally shown to be a weak agonist. Although HCV-monoinfected individuals in our study did not show AL9-specific responses, we found that about half of HCV/HIV-coinfected individuals had dual responses to both epitopes. High dual T-cell recognition among coinfected subjects was usually due to separate T-cell populations targeting each epitope, as determined by pentamer staining. The one individual demonstrating cross-reactive T cells to both epitopes showed the most advanced degree of liver disease. In coinfected individuals, we observed a positive correlation between the magnitudes of T-cell responses to both the SL9 and the AL9 epitopes, which was also positively associated with the clinical parameter of liver damage. Thus, we find that HIV infection induces T cells that can cross-react to heterologous viruses or prime for T cells that are closely related in sequence. However, the induction of cross-reactive T cells may not be associated with control of disease caused by the heterologous virus. This demonstrates that degeneracy of HIV-specific T cells may play a role in the immunopathology of HCV/HIV coinfection.  相似文献   

13.
Human papillomavirus type 16 (HPV16) E6 and E7 oncoproteins are required for cellular transformation and represent candidate targets for HPV-specific and major histocompatibility complex class I-restricted CD8(+)-T-cell responses in patients with cervical cancer. Recent evidence suggests that cross-reactivity represents the inherent nature of the T-cell repertoire. We identified HLA-A2 binding HPV16 E7 variant peptides from human, bacterial, or viral origin which are able to drive CD8(+)-T-cell responses directed against wild-type HPV16 E7 amino acid 11 to 19/20 (E7(11-19/20)) epitope YMLDLQPET(T) in vitro. CD8(+) T cells reacting to the HLA-A2-presented peptide from HPV16 E7(11-19(20)) recognized also the HLA-A2 binding peptide TMLDIQPED (amino acids 52 to 60) from the human coronavirus OC43 NS2 gene product. Establishment of coronavirus NS2-specific, HLA-A2-restricted CD8(+)-T-cell clones and ex vivo analysis of HPV16 E7 specific T cells obtained by HLA-A2 tetramer-guided sorting from PBL or tumor-infiltrating lymphocytes obtained from patients with cervical cancer showed that cross-reactivity with HPV16 E7(11-19(20)) and coronavirus NS2(52-60) represents a common feature of this antiviral immune response defined by cytokine production. Zero of 10 patients with carcinoma in situ neoplasia and 3 of 18 patients with cervical cancer showed > or =0.1% HPV16 E7-reactive T cells in CD8(+) peripheral blood lymphocytes. In vivo priming with HPV16 was confirmed in patients with cervical cancer or preinvasive HPV16-positive lesions using HLA-A2 tetramer complexes loaded with the E6-derived epitope KLPQLCTEL. In contrast, we could not detect E6-reactive T cells in healthy individuals. These data imply that the measurement of the HPV16 E7(11-19(20)) CD8(+)-T-cell response may reflect cross-reactivity with a common pathogen and that variant peptides may be employed to drive an effective cellular immune response against HPV.  相似文献   

14.
The role of epitope-specific TCR repertoire diversity in the control of HIV-1 viremia is unknown. Further analysis at the clonotype level is important for understanding the structural aspects of the HIV-1 specific repertoire that directly relate to CTL function and ability to suppress viral replication. In this study, we performed in-depth analysis of T cell clonotypes directed against a dominantly recognized HLA B57-restricted epitope (KAFSPEVIPMF; KF11) and identified common usage of the TCR beta-chain TRBV7 in eight of nine HLA B57 subjects examined, regardless of HLA B57 subtype. Despite this convergent TCR gene usage, structural and functional assays demonstrated no substantial difference in functional or structural avidity between TRBV7 and non-TRBV7 clonotypes and this epitopic peptide. In a subject where TRBV7-usage did not confer cross-reactivity against the dominant autologous sequence variant, another circulating TCR clonotype was able to preferentially recognize the variant peptide. These data demonstrate that despite selective recruitment of TCR for a conserved epitope over the course of chronic HIV-1 infection, TCR repertoire diversity may benefit the host through the ability to recognize circulating epitope variants.  相似文献   

15.
Specificity of peptide binding by the HLA-A2.1 molecule   总被引:6,自引:0,他引:6  
The HLA-A2 molecule contains a putative peptide binding site that is bounded by two alpha-helices and a beta-pleated sheet floor. Previous studies have demonstrated that the influenza virus matrix peptide M1 55-73 can sensitize target cells for lysis by HLA-A2.1-restricted virus-immune CTL and can induce CTL that can lyse virus-infected target cells. To assess the specificity of peptide binding by the HLA-A2.1 molecule, we examined the ability of seven variant M1 peptides to be recognized by a panel of M1 55-73 peptide-specific HLA-A2.1-restricted CTL lines. The results demonstrate that five out of the seven variant M1 55-73 peptides could be recognized by A2.1-restricted M1 55-73 peptide-specific CTL lines. The two variant peptides that were not recognized by any CTL could bind to HLA-A2.1 as indicated by their ability to compete for presentation of the M1 55-73 peptide. In addition, 5 of a panel of 24 unrelated peptides tested could also compete for M1 55-73 presentation by HLA-A2.1. One peptide derived from the sequence of a rotavirus protein could sensitize HLA-A2.1+ targets for lysis by M1 55-73 peptide-specific CTL. We conclude from these studies that: 1) the HLA-A2.1 molecule can bind a broad spectrum of peptides; 2) T cells selected for the ability to recognize one peptide plus a class I molecule can actually recognize an unrelated peptide presented by that same class I molecule; and 3) a stretch of three adjacent hydrophobic amino acids may be an important common feature of peptides that can bind to HLA-A2.1.  相似文献   

16.
First and foremost among the many factors that influence epitope presentation are the degradation of Ag, which results in peptide liberation, and the presence of HLA class I molecules able to present the peptides to T lymphocytes. To define the regions of HIV-1 Nef that can provide multiple T cell epitopes, we analyzed the Nef sequence and determined that there are 73 peptides containing 81 HLA-binding motifs. We tested the binding of these peptides to six common HLA molecules (HLA-A2, -A3, -A24, -B7, -B8, and -B35), and we showed that most of them were efficient binders (54% of motifs), especially peptides associating with HLA-A3, -B7/35, and -B8 molecules. Nef peptides most frequently recognized by T cells of HIV-1-infected individuals were 90-97, 135-143, 71-81, 77-85, 90-100, 73-82, and 128-137. The frequency of T cell recognition was not directly related to the strength of peptide-HLA binding. The generation of Nef epitopes is crucial; therefore, we investigated the digestion by the 20S proteasome of a large peptide, Nef(66-100). This fragment was efficiently cleaved, and NH(2)-terminally extended precursors of epitope 71-81 were recognized by T cells of an HIV-1-infected individual. These results suggest that a high frequency of T cell recognition may depend on proteasome cleavage.  相似文献   

17.
Previous studies have demonstrated that certain amino acid substitutions in the alpha two domain at positions 152 and 156 in the alpha two helix of the HLA-A2 molecule can affect presentation of the influenza virus matrix peptide M1 55-73 without abolishing binding of the M1 peptide. HLA-A2.1-restricted M1 55-73 peptide-specific CTL lines obtained from almost all HLA-A2.1+ individuals fail to recognize the M1 peptide presented by site-directed mutants of HLA-A2 that have either a Val----Ala or Val----Gln substitution at position 152 or a Leu----Trp substitution at position 156. Only one HLA-A2+ individual (donor Q66, HLA-A2,-B53,-B63) has been found who is able to generate a unique repertoire of HLA-A2-restricted M1 peptide-specific CTL that can recognize peptide presented by HLA-A2 mutants with either an Ala or Gln substitution at position 152 or a Trp substitution at position 156. These Q66 M1 peptide-specific CTL could be selected by stimulation with M1 peptide-pulsed transfectants that express the mutant HLA-A2 gene with the Trp substitution at 156. To determine if the presence of the unique CTL repertoire could be attributed to a variant HLA-A2 molecule in Q66, sequences were determined from polymerase chain reaction-amplified segments of the HLA-A2 RNA. Two different HLA-A2 genes were found expressed in Q66 cells: one is identical to HLA-A2.1 and the other is identical to HLA-A2.2F (Gln----Arg at position 43, Val----Leu at position 95, and Leu----Trp at position 156). These results demonstrate that a different CTL repertoire specific for HLA-A2 plus the M1 55-73 peptide is generated in an individual that expresses both HLA-A2.1 and HLA-A2.2F compared to individuals who express HLA-A2.1 alone, and that the unique repertoire can be selected by the presence of an HLA-A2 molecule with a single amino acid substitution at position 156.  相似文献   

18.
目的:经抗原表位预测和同源性比较,禽流感M1蛋白位于58-66序列的九肽是A型流感病毒中保守并具有很强免疫原性的T细胞表位,鉴于鼠伤寒沙门氏菌LT2的SEF17菌毛基因agfA作为疫苗载体的优势,在其上构建引起机体细胞免疫的沙门氏茵口服活体重组疫苗,以求在人类对抗禽流感过程中发挥作用。方法:利用两步重叠延伸PCR和基因置换,将外源表位插入LT2茵毛,并利用抗生素抗性,温度敏感质粒,及茵毛的刚果红吸附能力筛选菌毛上插有外源抗原表位的重组菌,并通过测序进一步验证外源基因的插入。结果:两步重叠延伸PCR产物AB,CD,AD长度与理论大小530bp,423bp,932bp一致。两次转化PCR鉴定,产物长度与理论大小932bp,634bp一致。刚果红吸附测定,菌毛上插入有外源肽的菌落因吸附刚果红能力减弱呈粉色,对筛选出的KmS型粉色茵落的PCR鉴定,产物长度与理论大小417bp一致,测序结果也显示agfA中外源表位基因的插入。结论:禽流感M1蛋白位于58-66序列的T细胞表位成功插入沙门氏茵SEF17菌毛基因agfA。  相似文献   

19.
After initiation of antiretroviral therapy (ART), HIV loads and frequencies of HIV epitope-specific immune responses decrease. A diverse virus-specific T cell receptor (TCR) repertoire allows the host to respond to viral epitope diversity, but the effect of antigen reduction as a result of ART on the TCR repertoire of epitope-specific CD8(+) T cell populations has not been well defined. We determined the TCR repertoires of 14 HIV-specific CD8(+) T cell responses from 8 HIV-positive individuals before and after initiation of ART. We used multiparameter flow cytometry to measure the distribution of memory T cell subsets and the surface expression of PD-1 on T cell populations and T cell clonotypes within epitope-specific responses from these individuals. Post-ART, we noted decreases in the frequency of circulating epitope-specific T cells (P = 0.02), decreases in the number of T-cell clonotypes found within epitope-specific T cell receptor repertoires (P = 0.024), and an overall reduction in the amino acid diversity within these responses (P < 0.0001). Despite this narrowing of the T cell response to HIV, the overall hierarchy of dominant T cell receptor clonotypes remained stable compared to that pre-ART. CD8(+) T cells underwent redistributions in memory phenotypes and a reduction in CD38 and PD-1 expression post-ART. Despite extensive remodeling at the structural and phenotypic levels, PD-1 was expressed at higher levels on dominant clonotypes within epitope-specific responses before and after initiation of ART. These data suggest that the antigen burden may maintain TCR diversity and that dominant clonotypes are sensitive to antigen even after dramatic reductions after initiation of ART.  相似文献   

20.
HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号