首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PTK7 is an essential component of the Wnt/planar cell polarity (PCP) pathway. We provide evidence that the Wnt/PCP pathway converges with pericellular proteolysis in both normal development and cancer. Here, we demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP), a key proinvasive proteinase, functions as a principal sheddase of PTK7. MT1-MMP directly cleaves the exposed PKP621↓LI sequence of the seventh Ig-like domain of the full-length membrane PTK7 and generates, as a result, an N-terminal, soluble PTK7 fragment (sPTK7). The enforced expression of membrane PTK7 in cancer cells leads to the actin cytoskeleton reorganization and the inhibition of cell invasion. MT1-MMP silencing and the analysis of the uncleavable L622D PTK7 mutant confirm the significance of MT1-MMP proteolysis of PTK7 in cell functions. Our data also demonstrate that a fine balance between the metalloproteinase activity and PTK7 levels is required for normal development of zebrafish (Danio rerio). Aberration of this balance by the proteinase inhibition or PTK7 silencing results in the PCP-dependent convergent extension defects in the zebrafish. Overall, our data suggest that the MT1-MMP-PTK7 axis plays an important role in both cancer cell invasion and normal embryogenesis in vertebrates. Further insight into these novel mechanisms may promote understanding of directional cell motility and lead to the identification of therapeutics to treat PCP-related developmental disorders and malignancy.  相似文献   

2.
It is well established that widely expressed PTK7 is essential for vertebrate tissue morphogenesis. In cancer, the functionality of PTK7 is selectively regulated by membrane type-1 matrix metalloproteinase (MT1-MMP), ADAMs (a disintegrin domain and metalloproteinases), and γ-secretase proteolysis. Here, we established that the full-length membrane PTK7, its Chuzhoi mutant with the two functional MT1-MMP cleavage sites, and its L622D mutant with the single inactivated MT1-MMP cleavage site differentially regulate cell motility in a two-dimensional versus three-dimensional environment. We also demonstrated that in polarized cancer cells, the levels of PTK7 expression and proteolysis were directly linked to the structure and kinetics of cell protrusions, including lamellipodia and invadopodia. In the functionally relevant and widely accepted animal models of metastasis, mouse and chick embryo models, both the overexpression and knock-out of PTK7 in HT1080 cells abrogated metastatic dissemination. Our analysis of human tissue specimens confirmed intensive proteolysis of PTK7 in colorectal cancer tumors, but not in matching normal tissue. Our results provide convincing evidence that both PTK7 expression and proteolysis, rather than the level of the cellular full-length PTK7 alone, contribute to efficient directional cell motility and metastasis in cancer.  相似文献   

3.
The membrane PTK7 pseudokinase, a component of both the canonical and noncanonical/planar cell polarity Wnt pathways, modulates cell polarity and motility in biological processes as diverse as embryo development and cancer cell invasion. To determine the individual proteolytic events and biological significance of the ectodomain shedding in the PTK7 function, we used highly invasive fibrosarcoma HT1080 cells as a model system. Current evidence suggested a likely link between PTK7 shedding and cell invasion in our HT1080 cell model system. We also demonstrated that in HT1080 cells the cleavage of the PTK7 ectodomain by an ADAM proteinase was coupled with the membrane type-1 matrix metalloproteinase (MT1-MMP) cleavage of the PKP621↓LI site in the seventh Ig-like domain of PTK7. Proteolytic cleavages led to the generation of two soluble, N-terminal and two matching C-terminal, cell-associated fragments of PTK7. This proteolysis was a prerequisite for the intramembrane cleavage of the C-terminal fragments of PTK7 by γ-secretase. γ-Secretase cleavage was predominantly followed by the efficient decay of the resulting C-terminal PTK7 fragment via the proteasome. In contrast, in HT1080 cells, which overexpressed the C-terminal PTK7 fragment, the latter readily entered the nucleus. Our data imply that therapeutic inhibition of PTK7 shedding may be used to slow cancer progression.  相似文献   

4.
In multicellular organisms, uncontrolled movement of cells can contribute to pathological conditions, such as multiple sclerosis and cancer. In highly aggressive tumors, the expression of matrix metalloproteinases (MMPs) is linked to the capacity of tumor cells to invade surrounding tissue and current research indicates that the membrane-anchored membrane type 1-matrix metalloproteinase (MT1-MMP) has a central role in this process. Endocytosis and trafficking of MT1-MMP are essential for its proper function, and here we examine the phosphorylation, internalization, and recycling of this enzyme, and the associated biochemical signaling in HeLa and HT-1080 fibrosarcoma cells. Activation of protein kinase C with phorbol 12-myristate 13-acetate resulted in phosphorylation of endogenous MT1-MMP at Thr(567) in vivo. Mutation of Thr(567) to alanine (to mimic non-phosphorylated MT1-MMP) reduced internalization of MT1-MMP, whereas mutation of Thr(567) to glutamic acid (to mimic phosphorylation) resulted in decreased levels of MT1-MMP on the cell surface. The endosomal trafficking and recycling of MT1-MMP was found to be dependent upon Rab7 and VAMP7, and blocking the function of these proteins reduced cell migration and invasion. Intracellular trafficking of MT1-MMP was observed to be coupled to the trafficking of integrin α5 and phosphorylation of ERK that coincided with this was dependent on phosphorylation of MT1-MMP. Together, these results reveal important roles for MT1-MMP phosphorylation and trafficking in both cell signaling and cell invasion.  相似文献   

5.
FXYD proteins are a group of short single-span transmembrane proteins that interact with the Na(+)/K(+) ATPase and modulate its kinetic properties. This study characterizes intracellular trafficking of two FXYD family members, FXYD1 (phospholemman (PLM)) and FXYD7. Surface expression of PLM in Xenopus oocytes requires coexpression with the Na(+)/K(+) ATPase. On the other hand, the Na(+)/Ca(2+) exchanger, another PLM-interacting protein could not drive it to the cell surface. The Na(+)/K(+) ATPase-dependent surface expression of PLM could be facilitated by either a phosphorylation-mimicking mutation at Thr-69 or a truncation of three terminal arginine residues. Unlike PLM, FXYD7 could translocate to the cell surface of Xenopus oocytes independently of the coexpression of α1β1 Na(+)/K(+) ATPase. The Na(+)/K(+) ATPase-independent membrane translocation of FXYD7 requires O-glycosylation of at least two of three conserved threonines in its ectodomain. Subsequent experiments in mammalian cells confirmed the role of conserved extracellular threonine residues and demonstrated that FXYD7 protein, in which these have been mutated to alanine, is trapped in the endoplasmic reticulum and Golgi apparatus.  相似文献   

6.
RACK1 is an evolutionarily conserved intracellular adaptor protein that is involved in a wide range of processes including cell adhesion and migration; however, its role in vertebrate development is largely unknown. Here, we identify RACK1 as a novel interaction partner of PTK7, a regulator of planar cell polarity that is necessary for neural tube closure. RACK1 is likewise required for Xenopus neural tube closure. Further, explant assays suggest that PTK7 and RACK1 are required for neural convergent extension. Mechanistically, RACK1 is necessary for the PTK7-mediated membrane localization of Dishevelled (DSH). RACK1 facilitates the PTK7-DSH interaction by recruiting PKCδ1, a known effector of DSH membrane translocation. These data place RACK1 in a novel signaling cascade that translocates DSH to the plasma membrane and regulates vertebrate neural tube closure.  相似文献   

7.
Enzymes in the matrix metalloproteinase (MMP) family have been linked to key events in developmental biology for almost 50 years. Biochemical, cellular and in vivo analyses have established that pericellular proteolysis contributes to numerous aspects of ontogeny including ovulation, fertilization, implantation, cellular migration, tissue remodeling and repair. Surface anchoring of proteinase activity provides spatial restrictions on substrate targeting. This review will utilize membrane type 1 MMP (MT1-MMP) as an example to highlight substrate diversity in pericellular proteolysis catalyzed by a membrane anchored MMP.  相似文献   

8.
Protein tyrosine kinase-7 (PTK7) is a catalytically inactive receptor tyrosine kinase (RTK). PTK7 is upregulated in many common human cancers, including colon cancer, lung cancer, gastric cancer and acute myeloid leukemia. The reason for this up-regulation is not yet known. To explore the functional role of PTK7, the expression of PTK7 in HCT 116 cells was examined using small interference (siRNA)-mediated gene silencing. Following transfection, the siRNA successfully suppressed PTK7 mRNA and protein expression. Knocking down of PTK7 in HCT 116 cells inhibited cell proliferation compared to control groups and induced apoptosis. Furthermore, this apoptosis was characterized by decreased mitochondrial membrane potential and activation of caspase-9 and -10. Addition of a caspase-10 inhibitor totally blocked this apoptosis, suggesting that caspase-10 may play a critical role in PTK7-knockdown-induced apoptosis, downstream of mitochondria. These observations may indicate a role for PTK7 in cell proliferation and cell apoptosis and may provide a potential therapeutic pathway for the treatment of a variety of cancers.  相似文献   

9.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays an important role in sphingosine-1-phosphate(S1P)-dependent migration of endothelial cells but the underlying mechanisms remain largely unknown. Herein, we show that S1P promotes the relocalization of MT1-MMP to peripheral actin-rich membrane ruffles that is coincident with its association with the adaptor protein p130Cas at the leading edge of migrating cells. Immunoprecipitation and confocal microscopy analyses suggest that this interaction required the tyrosine phosphorylation of p130Cas and also involves S1P-dependent phosphorylation of MT1-MMP within its cytoplasmic sequence. The interaction of MT1-MMP with p130Cas at the cell periphery suggests the existence of a close interplay between pericellular proteolysis and signaling pathways involved in EC migration.  相似文献   

10.
Ono A  Freed EO 《Journal of virology》1999,73(5):4136-4144
Binding of the human immunodeficiency virus type 1 (HIV-1) Gag protein precursor, Pr55(Gag), to membrane is an indispensable step in virus assembly. Previously, we reported that a matrix (MA) residue 6 substitution (6VR) imposed a virus assembly defect similar to that observed with myristylation-defective mutants, suggesting that the 6VR change impaired membrane binding. Intriguingly, the 6VR mutation had no effect on Gag myristylation. The defective phenotype imposed by 6VR was reversed by changes at other positions in MA, including residue 97. In this study, we use several biochemical methods to demonstrate that the residue 6 mutation, as well as additional substitutions in MA amino acids 7 and 8, reduce membrane binding without affecting N-terminal myristylation. This effect is observed in the context of Pr55(Gag), a truncated Gag containing only MA and CA, and in MA itself. The membrane binding defect imposed by the 6VR mutation is reversed by second-site changes in MA residues 20 and 97, both of which, when present alone, increase membrane binding to levels greater than those for the wild type. Both reduced and enhanced membrane binding imposed by the MA substitutions depend upon the presence of the N-terminal myristate. The results support the myristyl switch model recently proposed for the regulation of Gag membrane binding, according to which membrane binding is determined by the degree of exposure or sequestration of the N-terminal myristate moiety. Alternatively, insertion of the myristate into the lipid bilayer might be a prerequisite event for the function of other distinct MA-encoded membrane binding domains.  相似文献   

11.
Protein-tyrosine kinase 7 (PTK7) is a member of the defective receptor protein-tyrosine kinases and is known to function as a regulator of planar cell polarity during development. Its expression is up-regulated in some cancers including colon carcinomas. A 100-kDa fragment of PTK7 was detected in the culture media from colon cancer cells and HEK293 cells. The shed fragment was named sPTK7-Ig1-7 because its molecular mass was very similar to that of the entire extracellular domain of PTK7 that contains immunoglobulin-like loops 1 to 7 (Ig1-7). The shedding of sPTK7-Ig1-7 was enhanced by treatment with phorbol 12-myristate 13-acetate. In addition to the sPTK7-Ig1-7 found in the culture medium, two C-terminal fragments of PTK7 were detected in the cell lysates: PTK7-CTF1, which includes a transmembrane segment and a cytoplasmic domain, and PTK7-CTF2, which lacks most of the transmembrane segment from PTK7-CTF1. Analysis of PTK7 processing in the presence of various protease inhibitors or after knockdown of potential proteases suggests that shedding of PTK7 into sPTK7-Ig1-7 and PTK7-CTF1 is catalyzed by ADAM17, and further cleavage of PTK7-CTF1 into PTK7-CTF2 is mediated by the γ-secretase complex. PTK7-CTF2 localizes to the nucleus and enhances proliferation, migration, and anchorage-independent colony formation. Our findings demonstrate a novel role for PTK7 in the tumorigenesis via generation of PTK7-CTF2 by sequential cleavage of ADAM17 and γ-secretase.  相似文献   

12.
Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly(285)-Val(582)) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.  相似文献   

13.
Neural crest cells are a highly migratory pluripotent cell population that generates a wide array of different cell types and failure in their migration can result in severe birth defects and malformation syndromes. Neural crest migration is controlled by various means including chemotaxis, repellent guidance cues and cell-cell interaction. Non-canonical Wnt PCP (planar cell polarity) signaling has previously been shown to control cell-contact mediated neural crest cell guidance. PTK7 (protein tyrosine kinase 7) is a transmembrane pseudokinase and a known regulator of Wnt/PCP signaling, which is expressed in Xenopus neural crest cells and required for their migration. PTK7 functions as a Wnt co-receptor; however, it remains unclear by which means PTK7 affects neural crest migration. Expressing fluorescently labeled proteins in Xenopus neural crest cells we find that PTK7 co-localizes with the Ror2 Wnt-receptor. Further, co-immunoprecipitation experiments demonstrate that PTK7 interacts with Ror2. The PTK7/Ror2 interaction is likely relevant for neural crest migration, because Ror2 expression can rescue the PTK7 loss of function migration defect. Live cell imaging of explanted neural crest cells shows that PTK7 loss of function affects the formation of cell protrusions as well as cell motility. Co-expression of Ror2 can rescue these defects. In vivo analysis demonstrates that a kinase dead Ror2 mutant cannot rescue PTK7 loss of function. Thus, our data suggest that Ror2 can substitute for PTK7 and that the signaling function of its kinase domain is required for this effect.  相似文献   

14.
15.
A balance between the proteolytic processing of amyloid precursor protein APP through the amyloidogenic and the non-amyloidogenic pathways controls the production and release of amyloid β-protein, whose accumulation in the brain is associated to the onset of Alzheimer Disease. APP is also expressed on circulating platelets. The regulation of APP processing in these cells is poorly understood. In this work we show that platelets store considerable amounts of APP fragments, including sAPPα, that can be released upon stimulation of platelets. Moreover, platelet stimulation also promotes the proteolysis of intact APP expressed on the cell surface. This process is supported by an ADAM metalloproteinase, and causes the release of sAPPα. Processing of intact platelet APP is promoted also by treatment with calmodulin antagonist W7. W7-induced APP proteolysis occurs through the non-amyloidogenic pathway, is mediated by a metalloproteinase, and causes the release of sAPPα. Co-immunoprecipitation and pull-down experiments revealed a physical association between calmodulin and APP. These results document a novel role of calmodulin in the regulation of non-amyloidogenic processing of APP.  相似文献   

16.
BRCA2 localizes to centrosomes between G1 and prophase and is removed from the centrosomes during mitosis, but the underlying mechanism is not clear. Here we show that BRCA2 is cleaved into two fragments by membrane type-1 matrix metalloproteinase (MT1-MMP), and that knockdown of MT1-MMP prevents the removal of BRCA2 from centrosomes during metaphase. Mass spectrometry mapping revealed that the MT1-MMP cleavage site of human BRCA2 is between Asn-2135 and Leu-2136 (2132LSNN/LNVEGG2141), and the point mutation L2136D abrogated MT1-MMP cleavage. Our data demonstrate that MT1-MMP proteolysis of BRCA2 regulates the abundance of BRCA2 on centrosomes.  相似文献   

17.
Wnt signalling is an evolutionarily conserved pathway that directs cell-fate determination and morphogenesis during metazoan development. Wnt ligands are secreted glycoproteins that act at a distance causing a wide range of cellular responses from stem cell maintenance to cell death and cell proliferation. How Wnt ligands cause such disparate responses is not known, but one possibility is that different outcomes are due to different receptors. Here, we examine PTK7/Otk, a transmembrane receptor that controls a variety of developmental and physiological processes including the regulation of cell polarity, cell migration and invasion. PTK7/Otk co-precipitates canonical Wnt3a and Wnt8, indicating a role in Wnt signalling, but PTK7 inhibits rather than activates canonical Wnt activity in Xenopus, Drosophila and luciferase reporter assays. Loss of PTK7 function activates canonical Wnt signalling and epistasis experiments place PTK7 at the level of the Frizzled receptor. In Drosophila, Otk interacts with Wnt4 and opposes canonical Wnt signalling in embryonic patterning. We propose a model where PTK7/Otk functions in non-canonical Wnt signalling by turning off the canonical signalling branch.  相似文献   

18.
Cu-transporting ATPase ATP7B (Wilson disease protein) is essential for the maintenance of intracellular copper concentration. In hepatocytes, ATP7B is required for copper excretion, which is thought to occur via a transient delivery of the ATP7B- and copper-containing vesicles to the apical membrane. The currently available experimental systems do not allow analysis of ATP7B at the cell surface. Using epitope insertion, we identified an extracellular loop into which the HA-epitope can be introduced without inhibiting ATP7B activity. The HA-tagged ATP7B was expressed in Xenopus oocytes and the presence of ATP7B at the plasma membrane was demonstrated by electron microscopy, freeze-fracture experiments, and surface luminescence measurements in intact cells. Neither the deletion of the entire N-terminal copper-binding domain nor the inactivating mutation of catalytic Asp1027 affected delivery to the plasma membrane of oocytes. In contrast, surface targeting was decreased for the ATP7B variants with mutations in the ATP-binding site or the intra-membrane copper-binding site, suggesting that ligand-stabilized conformation(s) are important for ATP7B trafficking. The developed system provides significant advantages for studies that require access to both sides of ATP7B in the membrane.  相似文献   

19.
Matrix metalloproteinases (MMPs) are a family of enzymes responsible for the proteolytic processing of extracellular matrix (ECM) structural proteins under physiological and pathological conditions. During sprouting angiogenesis, the MMPs expressed by a single "tip" endothelial cell exhibit proteolytic activity that allows the cells of the sprouting vessel bud to migrate into the ECM. Membrane type I matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase MMP2, in the presence of the tissue inhibitor of metalloproteinases TIMP2, constitute a system of proteins that play an important role during the proteolysis of collagen type I matrices. Here, we have formulated a computational model to investigate the proteolytic potential of such a tip endothelial cell. The cell expresses MMP2 in its proenzyme form, pro-MMP2, as well as MT1-MMP and TIMP2. The interactions of the proteins are described by a biochemically detailed reaction network. Assuming that the rate-limiting step of the migration is the ability of the tip cell to carry out proteolysis, we have estimated cell velocities for matrices of different collagen content. The estimated velocities of a few microns per hour are in agreement with experimental data. At high collagen content, proteolysis was carried out primarily by MT1-MMP and localized to the cell leading edge, whereas at lower concentrations, MT1-MMP and MMP2 were found to act in parallel, causing proteolysis in the vicinity of the leading edge. TIMP2 is a regulator of the proteolysis localization because it can shift the activity of MT1-MMP from its enzymatic toward its activatory mode, suggesting a tight mechanosensitive regulation of the enzymes and inhibitor expression. The model described here provides a foundation for quantitative studies of angiogenesis in extracellular matrices of different compositions, both in vitro and in vivo. It also identifies critical parameters whose values are not presently available and which should be determined in future experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号