首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D K Murray  M E Hill  D H Nelson 《Life sciences》1990,46(25):1843-1849
The mechanism of the inhibitory action of glucocorticoids on glucose uptake is incompletely understood. Treatment with corticosteroids of cells in which glucose uptake is stimulated at insulin postbinding and postreceptor sites may clarify the site of the steroid inhibitory action. Hydrogen peroxide, which has been shown to stimulate the insulin receptor tyrosine kinase, and phorbol myristate acetate (PMA) which stimulates protein kinase C were, therefore, used as stimulators of glucose transport in this study. These studies demonstrate that dexamethasone and the sphingoid bases, sphinganine and sphingosine, inhibit glucose uptake that has been stimulated at either the receptor kinase or protein kinase C level in both 3T3-L1 and 3T3-C2 cells. These data confirm glucocorticoid inhibitory action at a post binding level and support the suggestion that some corticosteroid inhibitory effects may be mediated by an action on sphingolipid metabolism.  相似文献   

2.
The effects of physiological glucocorticoids such as cortisol and corticosterone, as well as dexamethasone, on proliferation and differentiation of rat fat cell precursors kept in primary culture were analyzed. In serum-containing medium (10%), glucocorticoids markedly decreased cell proliferation, either on subconfluent or on confluent cultures. This effect was independent of the presence of insulin. In contrast, acute amplification of adipose conversion was observed mainly when glucocorticoids and insulin were added simultaneously. Morphological quantification of lipid-containing cells confirmed acceleration of the maturation process, and an early and specific reorganization of the cytoskeleton was detected at the ultrastructural level. In the presence of insulin, glucocorticoids also enhanced the main marker enzymes, lipoprotein lipase, and glycerol phosphate dehydrogenase. Glucocorticoid effects on precursor proliferation and differentiation were clearly dose-dependent, dexamethasone being 10 times more potent than cortisol and corticosterone. Similar results were obtained in serum-free medium, as well as in preadipocyte cultures derived from different fat deposits. This study demonstrates that in addition to an acute inhibition of precursor growth, glucocorticoids exert a clear stimulation of adipose conversion, which depends mainly on the presence of insulin and the glucocorticoid concentration.  相似文献   

3.
We used primary cultures of rat hepatocytes to evaluate the effects of glucocorticoids on insulin-responsive hepatic lipogenesis. The data indicate that hepatocytes incubated for 20 h with dexamethasone (0.1 microM) alone are profoundly resistant to the ability of insulin to stimulate lipogenesis acutely. In contrast, primary cultures of hepatocytes incubated with dexamethasone plus insulin are hyper-responsive to the ability of insulin to stimulate lipogenesis chronically. This potentiation of insulin action by a glucocorticoid occurs at physiological concentrations of the two hormones. Exposure to dexamethasone plus insulin for more than 4 h is required for the two hormones to enhance insulin action either by overcoming the insulin resistance induced by dexamethasone alone or by stimulating insulin action induced by insulin alone. Despite the marked potentiation of insulin action, hepatocytes exposed to dexamethasone plus insulin are less sensitive to insulin, as demonstrated by a shift to the right in the dose-response curve for insulin-stimulated lipogenesis. The resistance of hepatocytes to the acute effects of insulin after exposure to dexamethasone alone and the potentiation of insulin action and decreased sensitivity to insulin after exposure to insulin plus dexamethasone are all mediated by post-insulin-binding events. These studies demonstrate potentiation of insulin action in the liver by physiological concentrations of glucocorticoids and may have physiological significance for the regulation of normal hepatic lipogenesis, for the hyperlipidaemia observed with the pharmacological use of glucocorticoids, and for disease states in man associated with hyperinsulinaemia and hypercortisolism.  相似文献   

4.
Addition of 5 to 250 micromolar adenosine to the culture medium resulted in a 30–80% inhibition of the rate of uptake of 2-deoxyglucose or 3–0-methylglucose by sparse or confluent 3T3 cells within three hours. The inhibition of deoxyglucose uptake could be reversed partially by changing the cells to medium without adenosine for two hours and could be prevented completely by the addition of persantin, an inhibitor of nucleoside uptake. The adenosine effect is not due to inhibition of pyrimidine synthesis, since it is not prevented by uridine. It is not seen in 3T6 cells lacking adenosine kinase. The inhibition could be observed on confluent cells whose deoxyglucose uptake was stimulated by insulin, epidermal growth factor (EGF), calf serum or calcium phosphate. Although the percentage stimulation over control by these factors varied, the percentage inhibition by addition of adenosine of the stimulated rates, as well as the unstimulated rate, was relatively constant. EGF, insulin and calcium phosphate caused little or no stimulation of deoxyglucose uptake by sparse cells, whether adenosine treated or untreated. The results suggest that adenosine acts intracellularly after phosphorylation to regulate sugar uptake through a mechanism which is independent of the regulation by hormones and cell density.  相似文献   

5.
Glucocorticoids inhibit glucose utilization by fat cells. The possibility that this effect results from altered glucose transport was investigated using an oil-centrifugation technique which allows a rapid (within 45 s) estimation of glucose or 3-O-methylglucose uptake by isolated fat cells. At high concentration (greater than 25 muM), dexamethasone inhibited glucose uptake within 1 min of its addition to fat cells. Efflux of 3-O-methylglucose was also impaired by 0.1 mM dexamethasone. However, diminished glucose uptake was not a specific effect of glucocorticoids; high concentrations (0.1 mM) of 17beta-estradiol, progesterone, and deoxycorticosterone produced a similar response in adipocytes. At a more physiologic steroid concentration (0.1 muM), glucocorticoids inhibited glucose uptake in a time-dependent manner (maximum effect in 1 to 2 hours). This effect was specific for glucocorticoids since, under these conditions, glucose uptake was not changed by the non-glucocorticoid steroids. Lineweaver-Burk analysis showed that 0.1 muM dexamethasone treatment produced a decrease in Vmax for glucose uptake but did not change the Ku. Hexokinase activity and ATP levels were not altered by this treatment, suggesting that processes involved in glucose phosphorylation were not affected. Dexamethasone treatment also caused a reduction in uptake of 3-O-methylglucose when assayed using a low sugar concentration (0.1 mM). At a high concentration (10 mM), uptake of the methyl sugar was only slightly less than normal in treated cells. Stimulation by insulin markedly enhanced uptake of glucose and 3-O-methylglucose by both treated and untreated cells. At a low hexose concentration (0.1 mM) and in the presence of insulin, sugar uptake by dexamethasone-treated cells was slightly less than control cells. Stimulation by insulin did however completely overcome the alteration in hexose uptake when larger concentrations of sugars (greater than 5 mM) were used. There was no detectable change in total protein synthesis during incubation of fat cells with dexamethasone. However, actinomycin C blocked the inhibitory effect of dexamethasone on glucose uptake. Cycloheximide, which caused a small inhibition in glucose uptake, prevented the full expression of the inhibitory effect of dexamethasone on glucose transport. These results indicate that dexamethasone alters the facilitated transport of glucose and, secondly, suggest that synthesis of RNA and protein is needed for glucocorticoid action.  相似文献   

6.
The 3T3-F442A preadipocyte cell line was previously shown to possess specific glucocorticoid receptors whose number increased in the time course of differentiation. We have examined the effects of a three day dexamethasone treatment, added at confluence, on cells differentiated in the presence or absence of insulin. Triglyceride accumulation, polyamine content as well as glycerophosphate dehydrogenase and fatty acid synthetase activities were measured during the adipose conversion. We have also determined 2-deoxyglucose uptake in non-differentiated and differentiated cells. Dexamethasone was shown to decrease the adipose conversion by 3T3-F442A cells in the presence or absence of insulin. Intracellular spermidine content in differentiating cells was sensitive to dexamethasone and insulin in the same way as an enzymatic marker of terminal differentiation, glycerophosphate dehydrogenase. Dexamethasone decreases the 2 deoxyglucose uptake in non-differentiated and differentiated cells while insulin increases this uptake only in differentiated cells. This work shows that glucocorticoids inhibit adipocyte metabolism at distinct levels and suggests that these hormones might play an important role in the regulation of adipose tissue mass.Abbreviations DEX dexamethasone - FAS fatty acid synthetase - GPDH glycerophosphate dehydrogenase - MIX 1-methyl-3-isobutylxanthine  相似文献   

7.
Glucocorticoids act synergistically with insulin-like growth factor I (IGF-I) to stimulate DNA synthesis and replication of cultured human fibroblasts. In the present study, we further define glucocorticoid and IGF-I interactive effects on human fibroblast metabolism and growth. IGF-I stimulated dose-dependent increases in early metabolic events. Half-maximal effectiveness was seen at 5–8 ng/ml IGF-I, with mean maximal responses of 1.5-, 2-, and 6-fold for [3H]2-deoxyglucose uptake, [14C]glucose incorporation, and [14C]aminoisobutyric acid (AIB) uptake, respectively. A 48-hour preincubation with 10?7 M dexamethasone markedly enhanced both the sensitivity and maximal effectiveness of IGF-I stimulation of AIB uptake. In contrast, dexamethasone had no effect on IGF-I-stimulated glucose uptake and utilization. Maximum specific binding of [125I]IGF-I to fibroblast monolayers was identical in ethanol control and glucocorticoid-treated cells, with 50% displacement at ~5 ng/ml IGF-I. In addition to its synergism with IGF-I, preincubation with dexamethasone augmented insulin and epidermal growth factor (EGF) stimulation of [3H]thymidine incorporation; dexamethasone had no effect on platelet-derived growth factor or fibroblast growth factor action. Two-dimensional gel electrophoresis identified two specific glucocorticoid-induced proteins in human fibroblast cell extracts with molecular weights of 45K and 53K and pls of 6.8 and 6.3, respectively. These data indicate that IGF-I receptor-mediated actions in human fibroblasts are differentially modulated by glucocorticoids. Glucocorticoids are synergistic with IGF-I in stimulating mitogenesis and amino acid uptake, without having any apparent effect on IGF-I-stimulated glucose metabolism. Glucocorticoid enhancement of growth factor bioactivity may involve modulation of a regulatory event in the mitogenic signaling pathway subsequent to cell surface receptor activation. © 1995 Wiley-Liss, Inc.  相似文献   

8.
1. Protein degradation in rat hepatocytes in stationary monolayer culture was measured as release of radioactive trichloroacetic acid-soluble material from intracellular proteins labelled with [3H]leucine. 2. Glucocorticoids, but not other steroids, stimulated protein breakdown in the hepatocyte monolayers. The effects observed were greater when the cells were preincubated with the hormones, indicating that the stimulation was not immediate. In addition, the stimulation by glucocorticoids persisted for up to 4 h after hormone removal. 3. Cycloheximide and the lysosomotropic agents leupeptin and ammonia effectively blocked glucocorticoid stimulation of protein degradation. 4. Insulin blocked dexamethasone stimulation when added at the same time as the steroid, but not when added 3 h later. 5. Stimulation of protein breakdown by dexamethasone was additive with that by glucagon or dibutyryl cyclic AMP, suggesting that its mechanism of action is different from that of the latter two agents. 6. Total activities of several lysosomal enzymes were unaffected under conditions where protein breakdown was stimulated by either glucagon or dexamethasone. 7. It is suggested that, whereas glucagon, dibutyryl cyclic AMP and insulin modulate protein breakdown in these cells via changes in autophagocytosis, the stimulation by glucocorticoids is exerted independently, perhaps by stimulating the synthesis of membrane proteins essential to the autophagic process.  相似文献   

9.
Addition of insulin to nonproliferating serum-free cultures of secondary chicken embryo (CE) cells caused a 30% to 50% increase in cell number. Addition of any one of several glucocorticoids (dexamethasone, cortisol, or corticosterone) to the cultures two days before insulin addition increased the mitogenic effect of insulin by about twofold at each insulin concentration tested. This glucocorticoid stimulation of cell proliferation was “permissive” because in the absence of insulin glucocorticoids caused little increase in cell number (usually less than 15%). Glucocorticoids were maximally active at low concentrations (e.g., 10?10 M dexamethasone). Steroids without glucocorticoid activity were inactive over a wide range of concentrations. Glucocorticoids increased the mitogenic response to insulin largely by increasing the percentage of cells that insulin stimulated to synthesize DNA. The maximum mitogenic effect of insulin upon CE cells rapidly decreased after the cells were serially subcultured. After only nine population doublings (4 passages) in culture, the response to insulin was diminished by about 70%. The mitogenic effect of insulin plus dexamethasone declined similarly during serial subculture, and was always about twofold greater than the effect of insulin alone. The cells maintained their mitogenic responsiveness to serum as these responses decreased. In contrast to the growth promoting influence of glucocorticoids in the presence of insulin, glucocorticoids inhibited the mitogenic response of CE cells to serum. This result may resolve our above findings with reports that glucocorticoids inhibit the proliferation of CE cells.  相似文献   

10.
CON8 is a single-cell derived subclone of the 13762NF transplantable, hormone-responsive rat mammary tumor that proliferates rapidly in serum-free medium. Addition of either glucocorticoids or calf serum alone caused a slight stimulation of CON8 proliferation. However, glucocorticoids required the presence of specific serum proteins to strongly suppress CON8 cell growth. Furthermore, the anchorage-independent growth of CON8 cells was significantly reduced in the presence of glucocorticoids and serum. We have designated this serum activity GMGSF, for glucocorticoid modulating growth suppression factor. Inhibition of cell growth was limited to steroids with strong glucocorticoid biological activity, while exposure to the glucocorticoid antagonist RU38486 prevented this response. Half-maximal growth inhibition and half-maximal expression of a glucocorticoid-inducible gene product (2 nM) occurred slightly below the half-maximal receptor binding of [3H]dexamethasone (10nM). We have also selected a variant mammary epithelial tumor cell line, derived from CON8, denoted 8RUV7, whose proliferation and soft agar colony formation failed to be suppressed by glucocorticoids in the presence of serum. These glucocorticoid-resistant variant cells possess functional glucocorticoid receptors, competently produce the glucocorticoid-responsive gene product plasminogen activator inhibitor, and along with CON8 cells express milk fat globule protein antigens on their cell surface, indicative of their mammary epithelial cell character. We are using this variant line to genetically dissect the molecular mechanism of the glucocorticoid/GMGSF growth suppression pathway in mammary epithelial tumor cells.  相似文献   

11.
12.
Hampson LJ  Agius L 《FEBS letters》2007,581(21):3955-3960
Parasympathetic (cholinergic) innervation is implicated in the stimulation of hepatic glucose uptake by portal vein hyperglycaemia. We determined the direct effects of acetylcholine on hepatocytes. Acute exposure to acetylcholine mimicked insulin action on inactivation of phosphorylase, stimulation of glycogen synthesis and suppression of phosphoenolpyruvate carboxykinase mRNA levels but with lower efficacy and without synergy. Pre-exposure to acetylcholine had a permissive effect on insulin action similar to glucocorticoids and associated with increased glucokinase activity. It is concluded that acetylcholine has a permissive effect on insulin action but cannot fully account for the rapid stimulation of glucose uptake by the portal signal.  相似文献   

13.
1. Uptake and binding of dexamethasone to glucocorticoid receptor has been studied in Morris hepatoma 7800 C1 cells in relation to its effect on cell growth and peroxisomal beta-oxidation. 2. Intact cells showed saturable, specific dexamethasone binding of limited capacity and Scatchard analysis revealed one single class of binding sites with equilibrium dissociation constant (Kd) of 0.24 nM similar to other glucocorticoid receptors. However, the binding capacity of 24 fmol/mg cell protein is less than 5% of previously reported values. 3. Uptake of [3H]dexamethasone by intact cells was temperature dependent giving a linear Arrhenius plot with a calculated energy of activation of 58.5 kJ mol-1 x degree-1. 4. Cytosol fractions had specific binding proteins for glucocorticoid hormones with sedimentation coefficient of ca 7S. No specific binding sites for [3H]dexamethasone was demonstrated in purified membrane fractions. 5. Dexamethasone and the synthetic fatty acid analogue tetradecylthio acetic acid (TTA) both inhibited the growth of the 7800 C1 cells and induced the peroxisomal acyl-CoA oxidase activity. A combination of the two compounds gave additive effects. Both these effects of dexamethasone and TTA were counteracted by insulin. 6. We conclude that dexamethasone induces growth inhibition and enzyme induction by binding to functional intracellular glucocorticoid receptors. The action of dexamethasone is consistent with a dissolution in the membrane from where it diffuses passively into the cell and binds to specific receptors in an energy dependent step. 6. The synergistic action of dexamethasone and TTA and the counteraction exerted by insulin are not due to changes in the dexamethasone receptor affinity or binding capacity.  相似文献   

14.
Hydrocortisone and dexamethasone produced a time-dependent increase [125I]epidermal growth factor [( 125I]EGF) binding in primary cultures of isolated rat hepatocytes. Maximally effective doses of glucocorticoids resulted in a 70-100% increase in binding. The effect was similar when hepatocytes were maintained on collagen-coated plates or directly on culture dishes. The glucocorticoid-mediated increase in [125I]EGF binding could be detected after 4 h exposure to glucocorticoid and was substantial by 8 h. The major effect of glucocorticoid appeared to be to increase the number of EGF receptors. While insulin (100 nM) had no effect on basal [125I]EGF binding, it significantly inhibited the increase produced by the glucocorticoid. Since the inhibitory effect of insulin was only observed when insulin was added with the inducing glucocorticoid, insulin appears to inhibit an early hydrocortisone-mediated event.  相似文献   

15.
16.
Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth.  相似文献   

17.
Nicotinamide was shown to inhibit deoxyglucose uptake in three diverse differentiated cell lines. In 3T3-L1 fat cells, nicotinamide equally inhibited basal and insulin stimulated deoxyglucose uptake. Inhibition by nicotinamide was non-competitive. A variety of inhibitors of ADP-ribosylation blocked deoxyglucose uptake while some analogs with no activity against ADP-ribose synthetase also had little effect on deoxyglucose uptake. These findings should be taken into account when inhibitors of ADP-ribosylation are used with intact cells.  相似文献   

18.
A number of previous studies using in vivo and cultured fetal lung models have shown that the activity of choline-phosphate cytidylyltransferase, the enzyme which catalyzes a rate-limiting reaction in de novo phosphatidylcholine synthesis, is increased by glucocorticoids and other hormones which accelerate fetal lung maturation. To examine the mechanism of this glucocorticoid action further, we examined the effect of dexamethasone on cytidylyltransferase activity in cultured fetal rat lung explants and related it to specific dexamethasone binding. Dexamethasone stimulated cytidylyltransferase activity in the homogenate, microsomal and 105,000 X g supernatant fractions. The hormone did not alter the subcellular distribution of the enzyme, however; the bulk of the activity was in the supernatant fraction in both the control and dexamethasone-treated cultures. The dose-response curves for stimulation of cytidylyltransferase activity in the supernatant fraction and specific nuclear binding of dexamethasone were similar and both plateaued at approx. 20 nM. The EC50 for cytidylyltransferase stimulation was 6.6 nM and the Kd for dexamethasone binding was 6.8 nM. The relative potencies of various steroids for stimulating choline-phosphate cytidylyltransferase and for specific nuclear glucocorticoid binding were the same: dexamethasone greater than cortisol = corticosterone = dihydrocorticosterone greater than progesterone. The stimulation by dexamethasone of cytidylyltransferase activity and of choline incorporation into phosphatidylcholine were both abolished by actinomycin D. These data show that the stimulatory effect of dexamethasone on fetal rat lung choline-phosphate cytidylyltransferase activity is largely on the enzyme in the supernatant fraction and does not involve enzyme translocation to the microsomes as has been reported for cytidylyltransferase activation in some other systems. This effect of dexamethasone is a receptor-mediated process dependent on RNA and protein synthesis.  相似文献   

19.
The present report shows that System A-mediated 2-aminoisobutyric acid (AIB) uptake is elevated in hepatocytes isolated from adrenalectomized rats when they are compared to control cells. Although System ASC activity also shows this perturbation, Systems N, beta, L1, and L2 are unaffected. Transport of AIB in both cell types is stimulated by dexamethasone, insulin, and glucagon, yet the hepatocytes from the adrenalectomized rats are much less responsive to these hormones. This apparent decrease in competence is seen for adaptive regulation of System A as well. The in vitro addition of dexamethasone to the hepatocytes from the adrenalectomized animals does not restore fully their ability to respond to hormones or amino acid deprivation. These effects are observed even after the cells have been held in primary culture for 24 hr. The simultaneous addition of glucagon and dexamethasone to either cell type resulted in stimulation of transport to rates significantly greater than the sum of the increases produced by the two hormones when added separately. In contrast, insulin and dexamethasone were additive in their effects rather than synergistic. These results suggest that hepatocytes from adrenalectomized rats are less competent than control cells with respect to regulation of neutral amino acid transport, including stimulation by insulin or amino acid starvation, two processes which appear not to depend on glucocorticoid for maximal response.  相似文献   

20.
Inhibition of T cell-mediated cytotoxicity by anti-inflammatory steroids   总被引:3,自引:0,他引:3  
We have tested the capacity of glucocorticoids to modulate the effector function of splenic cytotoxic T lymphocytes (CTL) obtained after i.p. immunization with allogeneic cells. Although acute exposure to glucocorticoids did not inhibit the activity of freshly obtained splenic CTL, preincubation of these CTL for several hours with subnanomolar concentrations of several different glucocorticoids caused marked inhibition. The relative inhibitory potency of the steroids tested correlated with their reported activity both in glucocorticoid receptor binding assays and in assays of anti-inflammatory potency in man. The inhibitory effects of low concentrations (10(-10) M to 10(-9) M) of dexamethasone were reversed by human or mouse interleukin 2 (IL 2)-containing supernatants, but were not reversed by IL 1-containing supernatants. The inhibitory effects of higher concentrations (10(-8) M to 10(-7) M) of dexamethasone could not be reversed even by very high doses of mouse IL 2. In contrast to previous reports of minimal direct glucocorticoid effects on CTL activity, the present results suggest that after preincubation, splenic CTL from in vivo-immune mice are sensitive to inhibition by glucocorticoids, and that the glucocorticoids may act both indirectly (on IL 2 production) and directly on the CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号