首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chronic stage of vasospasm occurring several days after subarachnoid hemorrhage (SAH) is characterized by the development of histopathologic changes in cerebral arteries causing cerebral ischemia. Numerous experimental data indicate the involvement of immune mechanisms in the angiopathy caused by SAH. Endogenous opioids play also an important role in the ischemic lesions of the brain. Corticotropin releasing hormone (CRH) induces the release of beta-endorphin (beta-END) from hypothalamic neurons and also from mononuclear white blood cells. The function of CRH and beta-END in vasospasm following SAH and the interrelationship between neuroendocrine and immune changes requires further elucidation. In the present study we investigated the influence of CRH injected into cerebral cisterna magna (CM) of rats on beta-END-like level in cerebrospinal fluid (CSF) in acute and chronic phase of cerebral vasospasm following artificial SAH. Acutely CRH induced a significant rise of beta-END-like in CSF both in SAH and sham SAH rats. However, in rats subjected to SAH, a single injection of CRH caused a prolonged rise of 5-END in CSF, which was also seen 2 days after SAH, during the chronic phase of vasospasm. The obtained results indicate that CRH increases neuroendocrine changes induced by SAH, probably by an activation of immune cells involved in the patomechanism of chronic vasospasm.  相似文献   

2.
Dohi K  Ripley B  Fujiki N  Ohtaki H  Shioda S  Aruga T  Nishino S 《Peptides》2005,26(11):2339-2343
The aim of this study was to examine the role of the hypothalamic hypocretin/orexin system in complications of delayed ischemic neuronal deficit (DIND) resulting from symptomatic vasospasm in patients with aneurysmal subarachnoid hemorrhage (SAH). CSF hypocretin-1/orexin-A levels were measured in 15 SAH patients. DIND complications occurred in seven patients with symptomatic vasospasm. Hypocretin-1/orexin-A levels were low in SAH patients during the 10 days following the SAH event. CSF hypocretin-1/orexin-A levels were lower in patients with DIND complications than in those who did not develop DIND. A significant transient decline in CSF hypocretin-1/orexin-A levels was also observed at the onset of DIND in all patients with symptomatic vasospasm. The reduced hypocretin/orexin production observed in SAH patients may reflect reduced brain function due to the decrease in cerebral blood flow. These results, taken together with recent experimental findings in rats that indicate hypocretin receptor 1 (orexin 1 receptor) mRNA and protein are elevated following middle cerebral artery occlusion, suggest that a reduction in hypocretin/orexin production in SAH and DIND patients is associated with alterations in brain hypocretin/orexin signaling in response to ischemia.  相似文献   

3.
蛛网膜下腔出血对大鼠脑血流量和体感诱发电位的影响   总被引:2,自引:0,他引:2  
目的:探讨蛛网膜下腔出血(SAH)后脑血流量、体感诱发电位(SEP)潜伏期的改变及其与一氧化氮(NO)的关系。方法:对假手术对照组和SAH模型组大鼠检测24h局部脑血流量(rCBF)、SEP潜伏期和血清及脑组织NO含量动态变化。结果:非开颅刺破Willis环的方法可成功地诱发SAH。SAH后rCBF立即降低,在24h内无恢复趋势。SEP潜伏期于SAH后1h开始至24h明显延长。血清和脑组织NO含量  相似文献   

4.
There is increasing evidence that the conversion of big endothelin-1 (big ET-1) to endothelin-1 (ET-1) is specifically inhibited by the metalloproteinase inhibitor phosphoramidon. We investigated the effect of phosphoramidon on delayed cerebral vasospasm from subarachnoid hemorrhage (SAH) using a two-hemorrhage canine model. The magnitude of the vasospasm and the drug effect were determined angiographically. On SAH Day 7, diameter of the basilar artery decreased to about 55% of the control value obtained before SAH (on Day 0). Immunoreactive ET (IR-ET) in the cerebrospinal fluid (CSF) significantly increased after SAH (on Day 7). The intracisternal pretreatment of phosphoramidon potently suppressed the decrease in diameter of the basilar artery after SAH, i.e., observed decrease was only about 20%, compared with the value before SAH. In the phosphoramidon group, IR-ET in CSF markedly increased (on SAH Day 2), but the increased levels of IR-ET significantly declined on SAH Day 7. These results clearly indicate that phosphoramidon effectively prevents delayed cerebral vasospasm. Whether the prevention is due to the inhibition of conversion of big ET-1 to ET-1 is now under study.  相似文献   

5.
6.
ABSTRACT: BACKGROUND: Vasospasm-related delayed cerebral ischemia (DCI) significantly impacts on outcome after aneurysmal subarachnoid hemorrhage (SAH). Erythropoietin (EPO) may reduce the severity of cerebral vasospasm and improve outcome, however, underlying mechanisms are incompletely understood. In this study, the authors aimed to investigate the effect of EPO on cerebral metabolism and brain tissue oxygen tension (PbtO2). METHODS: Seven consecutive poor grade SAH patients with multimodal neuromonitoring (MM) received systemic EPO therapy (30.000 IU per day for 3 consecutive days) for severe cerebral vasospasm. Cerebral perfusion pressure (CPP), mean arterial blood pressure (MAP), intracranial pressure (ICP), PbtO2 and brain metabolic changes were analyzed during the next 24 hours after each dose given. Statistical analysis was performed with a mixed effects model. RESULTS: A total of 22 interventions were analyzed. Median age was 47 years (32-68) and 86% were female. Three patients (38%) developed DCI. MAP slightly decreased 2 hours after intervention (P<0.04) without significantly affecting CPP and ICP. PbtO2 significantly increased over time (P<0.05) to a maximum of 7+/-4mmHg increase 16 hours after infusion. Brain metabolic parameters did not change over time. CONCLUSIONS: EPO increases PbtO2 in poor grade SAH patients with severe cerebral vasospasm. The effect on outcome needs further investigation.  相似文献   

7.
Subarachnoid hemorrhage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Although an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbidity and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered for the treatment of cerebral vasospasm. In recent years, the mechanisms contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been investigated intensively. A number of pathological processes have been identified in the pathogenesis of vasospasm, including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. To date, the current therapeutic interventions remain ineffective as they are limited to the manipulation of systemic blood pressure, variation of blood volume and viscosity and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO) has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is administered systemically. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the current review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrhage.  相似文献   

8.
大鼠脑血管痉挛时NO和ET—1变化及尼莫地平的影响   总被引:1,自引:0,他引:1  
目的探讨蛛网膜下腔出血(SAH)后脑血管痉挛(CVS)时脑组织一氧化氮(NO)和内皮素-1(ET-1)含量变化及尼莫地平(ND)对其影响。方法将135只Wistar大鼠随机均分为SAH组、ND处理组和假手术组,观察手术前后基底动脉管径,及24h内局部脑血流量(rCBF)、脑组织NO和ET-1含量动态改变,并行海马病理检查。结果SAH后rCBF明显而持续降低,基底动脉管径显著缩小;海马CAl区锥体细胞严重受损;脑组织NO和ET-1含量均在SAH后1~24h显著增加(P<0.05~0.01)。ND处理后使上述异常变化均减轻。结论SAH后脑组织NO、ET-1增多可能参与了CVS所致脑损害过程,ND通过减轻CVS和拮抗脑组织NO及ET-1的病理性改变而发挥脑保护作用。  相似文献   

9.
1. Approximately one-third of the morbidity and mortality due to aneurysmal subarachnoid hemorrhage (SAH) is caused by delayed ischemic neurological deficit (DIND) due to cerebral vasospasm.2. Compared to prolonged arterial constriction in other parts of the body, cerebral vasospasm is characterized by its long duration and refractoriness to vasodilators such as calcium antagonists.3. Whereas oxyhemoglobin (oxyHb) liberated into the CSF from the subarachnoid clot has been deemed the causative agent of vasoconstriction, the biochemical mechanisms whereby oxyHb elicits prolonged constriction of the cerebral arteries has remained elusive. Here, we suggest that oxyHb triggers the generation of reactive oxygen intermediates (ROI) within the CSF.4. Multiple lines of evidence indicate that the occurrence of vasospasm, namely, prolonged smooth muscle contraction, is due to the following intracellular events.5. First, hydroxyl radicals (OH*), the most reactive species of ROI, are generated within the cerebral arterial wall via the Fenton and Haber–Weiss reactions catalyzed by oxyHb. Second, subsequent peroxidative membrane damage in the arterial smooth muscle cell enhances the metabolism of phosphatidylcholine and phosphatidylethanolamine, leading to a rise in the intracellular level of diacylglycerol, an endogenous activator of protein kinase C.6. The prolonged arterial contraction that occurs during vasospasm is attributable primarily to the activation of protein kinase C, not to the Ca2+/calmodulin system. In this article, literature relevant to the above thesis is reviewed, and the rationale for the antioxidant therapy against cerebral vasospasm is discussed.  相似文献   

10.
Because it has been argued that active myogenic tone prolongs cerebral vasospasm for >2 wk after subarachnoid hemorrhage (SAH), we attempted to identify the mechanism that plays the main role in sustaining the prolonged cerebral vasospasm. We especially focused on the roles of biomechanical and phenotypic changes in the cerebral arteries in the mechanisms of prolonged vasospasm after SAH. We used the basilar arteries from a "two-hemorrhage" canine model to make serial measurements of maximal contraction capacity and arterial stiffness (papaverine-insensitive tone) until day 28. We also examined hematoxylin-eosin-stained vasospastic canine basilar arteries for histological changes and immunohistochemically examined them for expression of myosin heavy chain isoforms (SMemb, SM1, and SM2), which are markers of smooth muscle phenotypic changes. Changes in collagen concentration in canine basilar arteries were also measured. Angiographic cerebral vasospasm persisted until day 14 and then gradually diminished; artery diameter returned to the control diameters on day 28. Maximal contraction capacity decreased until day 21 and showed some recovery by day 28. Arterial stiffness, on the other hand, progressed until day 28. Histological examination revealed medial thickening and increased connective tissue until day 21 and a return to control findings by day 28. The increased connective tissue was not accompanied by changes in collagen concentration, suggesting a role of some other protein in the increase in connective tissue. Immunohistochemical studies with anti-SMemb, anti-SM1, and anti-SM2 antibodies showed enhanced expression of SMemb from day 7 to day 21 and disappearance of SM1 and SM2 on days 14 and 21. The changes in myosin heavy chain isoform expression returned to normal on day 28. The above results indicate that biomechanical and phenotypic changes may play a pivotal role in sustaining cerebral vasospasm for >2 wk after SAH, with minimal changes in active myogenic arterial tone.  相似文献   

11.
ABSTRACT: BACKGROUND: One of the main causes of mortality and morbidity following subarachnoid haemorrhage (SAH) is the development of cerebral vasospasm, a frequent complication arising in the weeks after the initial bleeding. Despite extensive research, to date no effective treatment of vasospasm exists. Prostacyclin is a potent vasodilator and inhibitor of platelet aggregation. In vitro models have shown a relaxing effect of prostacyclin after induced contraction in cerebral arteries and a recent pilot trial showed positive effect on cerebral vasospasm in a clinical setting. No randomised, clinical trials have been conducted, investigating the possible pharmacodynamic effects of prostacyclin on the human brain following SAH. METHODS: This trial is a single-center, randomised, placebo controlled, parallel group, blinded, clinical, pilot trial. A total of 90 patients with SAH will be randomised to one of 3 intervention arms; epoprostenol 1 ng/kg/min, epoprostenol 2 ng/kg/min or placebo in addition to standard treatment. Trial medication will start day 5 after SAH and continue to day 10. Primary outcome measure is changes in regional cerebral blood flow from baseline in the arterial territories of the anterior cerebral artery, medial cerebral artery and the posterior cerebral artery, measured by CT perfusion scan. The secondary outcomes will be vasospasm measured by CT angiography, ischaemic parameters measured by brain microdialysis, flow velocities in the medial cerebral artery, clinical parameters and outcome (Glasgow Outcome Scale) at 3 months. CONCLUSION: The trial is an explorative, pilot trial designed to investigate the feasibility and possible effects of low-dose prostacyclin on a primary outcome of regional blood flow and vasospasm in the human brain following SAH. Trial registration: Clinicaltrials.gov NCT01447095.  相似文献   

12.
Hypoxic‐ischemic (HI) brain injury is a major cause of neurological abnormalities in the perinatal period. Inflammation contributes to the evolution of HI brain injury. Inter‐alpha inhibitor proteins (IAIPs) are a family of proteins that are part of the innate immune system. We have reported that endogenous IAIPs exhibit developmental changes in ovine brain and that exogenous IAIP treatment reduces neuronal death in HI neonatal rats. However, the effects of HI on endogenous IAIPs in brain have not been previously examined. In this study, we examined the effects of ischemia‐reperfusion on endogenous IAIPs levels in fetal sheep brain. Cerebral cortex, cerebellum, cervical spinal cord, choroid plexus, and CSF were snap frozen from sham control fetuses at 127 days gestation and after 30‐min of carotid occlusion and 4‐, 24‐, and 48‐h of reperfusion. IAIP levels were determined by Western immunoblot. IAIP expressions of the 250 kDa Inter‐alpha inhibitor (IaI) and 125 kDa Pre‐alpha inhibitor (PaI) in cerebral cortex and PaI in cerebellum were reduced (p < 0.05) 4‐h after ischemia compared with controls and returned toward control levels 24‐ and 48‐h after ischemia. CSF PaI and IaI were reduced 48 h after ischemia. We conclude that IAIPs in cerebral cortex and cerebellum are reduced by brain ischemia, and return toward control levels between 24 and 48 h after ischemia. However, changes in CSF IAIPs were delayed, exhibiting decreases 48 h after ischemia. We speculate that the decreases in endogenous IAIPs reflect increased utilization, potentially suggesting that they have endogenous neuroprotective properties. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 726–737, 2017  相似文献   

13.
Objective: To characterize and establish a reproducible model that demonstrates delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) in rats, in order to identify the initiating events, pathophysiological changes and potential targets for treatment.Methods: Twenty-eight male Sprague-Dawley rats (250 - 300 g) were arbitrarily assigned to one of two groups - SAH or saline control. Rat subarachnoid hemorrhage in the SAH group (n=15) was induced by double injection of autologous blood, 48 hr apart, into the cisterna magna. Similarly, normal saline (n=13) was injected into the cisterna magna of the saline control group. Rats were sacrificed on day five after the second blood injection and the brains were preserved for histological analysis. The degree of vasospasm was measured using sections of the basilar artery, by measuring the internal luminal cross sectional area using NIH Image-J software. The significance was tested using Tukey/Kramer''s statistical analysis.Results: After analysis of histological sections, basilar artery luminal cross sectional area were smaller in the SAH than in the saline group, consistent with cerebral vasospasm in the former group. In the SAH group, basilar artery internal area (.056 μm ± 3) were significantly smaller from vasospasm five days after the second blood injection (seven days after the initial blood injection), compared to the saline control group with internal area (.069 ± 3; p=0.004). There were no mortalities from cerebral vasospasm.Conclusion: The rat double SAH model induces a mild, survivable, basilar artery vasospasm that can be used to study the pathophysiological mechanisms of cerebral vasospasm in a small animal model. A low and acceptable mortality rate is a significant criterion to be satisfied for an ideal SAH animal model so that the mechanisms of vasospasm can be elucidated 7, 8. Further modifications of the model can be made to adjust for increased severity of vasospasm and neurological exams.  相似文献   

14.
Hirashima  Yutaka  Nakamura  Shin  Endo  Shunro  Kuwayama  Naoya  Naruse  Yuchi  Takaku  Akira 《Neurochemical research》1997,22(10):1249-1255
The aim of the present study was to examine the changes of inflammatory and coagulation factors in blood of the internal jugular vein, not of peripheral vein, in patients with subarachnoid hemorrhage (SAH). The results show that while interleukin-6 (IL-6) and platelet activating factor (PAF) concentrations increased within first 4 days after SAH and remained elevated up to 14 days, interleukin-1 (IL-1 showed a transient increase between 5–9 days after SAH and tumor necrosis factor- (TNF-) remained unchanged. Also different coagulation factors were increased between 5–9 days after SAH. Moreover, patients with delayed ischemic neurological deficits (DIND) displayed the highest levels of PAF and the coagulation factors, von Willebrand factor (vWF) and thrombin-antithrombin III complex (TAT). These results suggest that elevation of PAF and other inflammatory cytokines following SAH may cause the hypercoagulation state that is associated with cerebral vasospasm and internal jugular vein may be more adequate vessel for sampling blood to examine these factors.  相似文献   

15.
In the present study, we investigated the in vivo effects of melatonin on SAH-induced cerebral vasospasm and oxidative stress, resulting from SAH in an experimental rat model. Twenty-eight rats (225–250 g) were divided into four groups equally: group 1; control, group 2; SAH, group 3; SAH plus placebo, and group 4; SAH plus melatonin. We used double haemorrhage method for SAH groups. Beginning 6 h after SAH, 20 mg/kg melatonin or equal volume of 0.9% saline was administered intraperitoneally twice daily for 5 days to groups 3 and 4, respectively. Melatonin or 0.9% saline injections were continued up to fifth day after SAH and rats were sacrificed at the end of this period. Brain sections at the level of the pons were examined by light microscopy. The lumen diameter and the vessel wall thickness of basilar artery were measured using a micrometer. The serum levels of cerebral vasodilator nitric oxide (NO), the brain levels of an intrinsic antioxidant superoxide dismutase (SOD) and a NO regulator arginase activities were measured. The brain levels of inducible nitric oxide (iNOS) and nitrotyrosine, a nitrosative stress parameter immunohistochemiacally determined. In conclusion, melatonin administration ameliorated cerebral vasospasm by increasing serum NO level and decreasing the brain the levels of arginase and oxidative stress. It is therefore possible that increased brain arginase activity after SAH may also have a significant role in the pathogenesis of vasospasm by limiting the availability of arginine for NO production.  相似文献   

16.
IL-35 has been identified as a novel anti-inflammatory cytokine that belongs to the IL-12 cytokine family and has been verified to play a protective role in autoimmune diseases. In this study, we investigated the protective effects of IL-35 on cerebral ischemia/reperfusion (I/R) injury in a middle cerebral artery occlusion mouse model. We determined that the expression of IL-35 was initially decreased and subsequently increased in I/R injury. Moreover, IL-35 (i.c.v.) pre- and posttreatment significantly reduced the infarct volume and improved neurological deficits after 45 min of ischemia and 24 h of reperfusion. Importantly, IL-35 treatment improved neurological function recovery, particularly in balance ability, at 14 days after treatment. Finally, our results showed that IL-35 treatment reduced the expression of IL-6 and IL-1β, which are confirmed proinflammatory cytokines, thus indicating that these cytokines have both been linked to the anti-inflammatory mechanisms of IL-35. Therefore, IL-35 may be a key immune mediator in brain ischemic injury and appears to have promising potential for clinical trials.  相似文献   

17.

Background

One of the main causes of mortality and morbidity following subarachnoid haemorrhage (SAH) is the development of cerebral vasospasm, a frequent complication arising in the weeks after the initial bleeding. Despite extensive research, to date no effective treatment of vasospasm exists. Prostacyclin is a potent vasodilator and inhibitor of platelet aggregation. In vitro models have shown a relaxing effect of prostacyclin after induced contraction in cerebral arteries, and a recent pilot trial showed a positive effect on cerebral vasospasm in a clinical setting. No randomised, clinical trials have been conducted, investigating the possible pharmacodynamic effects of prostacyclin on the human brain following SAH.

Methods

This trial is a single-centre, randomised, placebo-controlled, parallel group, blinded, clinical, pilot trial. A total of 90 patients with SAH will be randomised to one of three intervention arms: epoprostenol 1?ng/kg/min, epoprostenol 2?ng/kg/min or placebo in addition to standard treatment. Trial medication will start day 5 after SAH and continue to day 10. The primary outcome measure is changes in regional cerebral blood flow from baseline in the arterial territories of the anterior cerebral artery, medial cerebral artery and the posterior cerebral artery, measured by CT perfusion scan. The secondary outcomes will be vasospasm measured by CT angiography, ischaemic parameters measured by brain microdialysis, flow velocities in the medial cerebral artery, clinical parameters and outcome (Glasgow Outcome Scale) at 3?months.

Trial registration

Clinicaltrials.gov NCT01447095.  相似文献   

18.
This study characterized the time course of changes in cerebral blood flow (CBF) and vascular diameter in a dual-hemorrhage model of subarachnoid hemorrhage (SAH) in rats and examined whether acute blockade of the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) with N-(3-chloro-4-morpholin-4-yl)phenyl-N'-hydroxyimido formamide (TS-011) can reverse delayed vasospasm in this model. Rats received an intracisternal injection of blood (0.4 ml) on day 0 and a second injection 2 days later. CBF was sequentially measured using laser-Doppler flowmetry, and the diameters of the cerebral arteries were determined after filling the cerebral vasculature with a casting compound. CBF fell to 67% of control after the first intracisternal injection of blood but returned to a value near control 24 h later. CBF again fell to 63% of control after a second intracisternal injection of blood and remained 30% below control for 5 days. The fall in CBF after the second intracisternal injection of blood was associated with a sustained 30% reduction in the diameters of the middle cerebral, posterior communicating, and basilar arteries. Acute blockade of the synthesis of 20-HETE with TS-011 (0.1 mg/kg i.v.), 5 days after the second SAH, increased the diameters of the cerebral arteries, and CBF returned to control. These results indicate that the rats develop delayed vasospasm after induction of the dual-hemorrhage model of SAH and that blockade of the synthesis of 20-HETE fully reverses cerebral vasospasm in this model. They also implicate 20-HETE in the development and maintenance of delayed cerebral vasospasm.  相似文献   

19.
Activation of the extracellular-signal-responsive kinase (ERK 1/2) by MAP kinase/ERK kinase (MEK1/2) following ischemia/reperfusion in the brain has been associated with cell death since inhibition of MEK1/2 provides neuroprotection in cerebral ischemia injury. Since inflammation has been implicated in ischemic brain injury, the present study investigated whether MEK1/2 modifies expression of two key inflammatory cytokines, IL-1beta and TNFalpha, that have been shown to exacerbate ischemic brain injury. A mouse model of transient cerebral ischemia was deployed to test the effect of selective MEK1/2 inhibitor (SL327) on infarct size and cytokine expression. SL327 (100 mg/kg, i.p.) administered 15 min prior to ischemia resulted in 64% reduction in infarct size over controls (n = 8, P < 0.01). Under the same condition, SL327 significantly reduced peak expression of IL-1beta mRNA (59% reduction compared to vehicle, P < 0.01, n = 4) but not TNF-alpha mRNA. A parallel reduction in IL-1beta protein (67%, P < 0.05, n = 6) was also observed using ELISA analysis. These data suggest that the neuroprotective effect of MEK1/2 inhibition may be mediated by suppression of IL-1beta. The study also demonstrates for the first time that these two cytokines are differentially regulated by kinase mediated signaling pathways.  相似文献   

20.

Background

Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in vascular remodeling, (neuro)inflammation, blood-brain barrier breakdown and neuronal apoptosis. Proinflammatory mechanisms are suggested to play an important role during early brain injury and cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). This study aimed to analyze MMP-3, MMP-9, TIMP-1 and TIMP-3 in patients with SAH and their respective association with cerebral vasospasm (CVS).

Methods

Blood samples were collected in 20 SAH patients on days 1 to 7, 9, 11, 13 and 15 and 20 healthy age and gender matched volunteers. Serum MMPs and TIMPs were analyzed using enzyme-linked immunosorbent assay. Doppler sonographic CVS was defined as a mean blood flow velocity above 120 cm/sec in the middle cerebral artery. When discharged from hospital and at 6 month follow-up neurological outcome was evaluated using the Glasgow Outcome Score and the modified Rankin Scale.

Results

MMP-9 was higher in SAH patients compared to healthy controls (p<0.001). Patients with CVS (n = 11) had elevated MMP-9 serum levels compared to patients without CVS (n = 9, p<0.05). Higher MMP-9 was observed in the presence of cerebral ischemia associated with cerebral vasospasm (p<0.05). TIMP-1 was increased in patients with SAH on day 4 (p<0.05). There was an imbalance of the MMP-9/TIMP-1 ratio in favor of MMP-9 in SAH patients, in particular those with CVS (p<0.001). MMP-3 and TIMP-3 were significantly lower in SAH patients throughout day 4 and day 7, respectively (p<0.05). We did not find an association between MMP-, TIMP levels and neurological outcome after 6 months.

Conclusions

MMP-3 and -9 are differentially regulated in SAH patients with both enzymes showing peak levels correlating with the development of CVS. The inhibitors TIMP-1 and -3 were low during the acute phase after SAH and increased later on which might suggest a preponderance of pro-inflammatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号