首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clinically significant increases in pulmonary vascular resistance have been noted on acute withdrawal of inhaled nitric oxide (NO). Endothelin (ET)-1 is a vasoactive peptide produced by the vascular endothelium that may participate in the pathophysiology of pulmonary hypertension. The objectives of this study were to determine the effects of inhaled NO on endogenous ET-1 production in vivo in the intact lamb and to determine the potential role of ET-1 in the rebound pulmonary hypertension associated with the withdrawal of inhaled NO. Seven 1-mo-old vehicle-treated control lambs and six PD-156707 (an ET(A) receptor antagonist)-treated lambs were mechanically ventilated. Inhaled NO (40 parts per million) was administered for 24 h and then acutely withdrawn. After 24 h of inhaled NO, plasma ET-1 levels increased by 119.5 +/- 42.2% (P < 0.05). Western blot analysis revealed that protein levels of preproET-1, endothelin-converting enzyme-1alpha, and ET(A) and ET(B) receptors were unchanged. On acute withdrawal of NO, pulmonary vascular resistance (PVR) increased by 77.8% (P < 0.05) in control lambs but was unchanged (-5.5%) in PD-156707-treated lambs. Inhaled NO increased plasma ET-1 concentrations but not gene expression in the intact lamb, and ET(A) receptor blockade prevented the increase in PVR after NO withdrawal. These data suggest a role for ET-1 in the rebound pulmonary hypertension noted on acute withdrawal of inhaled NO.  相似文献   

2.
Clinically significant increases in pulmonary vascular resistance (PVR) have been noted upon acute withdrawal of inhaled nitric oxide (iNO). Previous studies in the normal pulmonary circulation demonstrate that iNO increases endothelin-1 (ET-1) levels and decreases endogenous nitric oxide synthase (NOS) activity, implicating an endothelial etiology for the increase in resistance upon iNO withdrawal. However, the effect of iNO on endogenous endothelial function in the clinically relevant pulmonary hypertensive circulation is unknown. The objective of this study was to determine the effects of iNO on endogenous NO-cGMP and ET-1 signaling in lambs with preexisting pulmonary hypertension secondary to increased pulmonary blood flow. Eight fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt lambs). After delivery (4 wk), the shunt lambs were mechanically ventilated with iNO (40 ppm) for 24 h. After 24 h of inhaled NO, plasma ET-1 levels increased by 34.8% independently of changes in protein levels (P < 0.05). Contrary to findings in normal lambs, total NOS activity did not decrease during iNO. In fact, Western blot analysis demonstrated that tissue endothelial NOS protein levels decreased by 43% such that NOS activity relative to protein levels actually increased during iNO (P < 0.05). In addition, the beta-subunit of soluble guanylate cyclase decreased by 70%, whereas phosphodiesterase 5 levels were unchanged (P < 0.05). Withdrawal of iNO was associated with an acute increase in PVR, which exceeded baseline PVR by 45%, and a decrease in cGMP concentrations to levels that were below baseline. These data suggest that the endothelial response to iNO and the potential mechanisms of rebound pulmonary hypertension are dependent upon the underlying pulmonary vasculature.  相似文献   

3.
The aim of this study was to assess the role of nitric oxide (NO) and endothelin (ET)-1 in the pathophysiology of persistent pulmonary hypertension of the newborn in fetal lambs with a surgically created congenital diaphragmatic hernia (CDH). The pulmonary vascular response to various agonists and antagonists was assessed in vivo between 128 and 132 days gestation. Age-matched fetal lambs served as control animals. Control and CDH lambs had similar pulmonary vasodilator responses to acetylcholine, sodium nitroprusside, zaprinast, and dipyridamole. The ET(A)-receptor antagonist BQ-123 caused a significantly greater pulmonary vasodilatation in CDH than in control animals. The ET(B)-receptor agonist sarafotoxin 6c induced a biphasic response, with a sustained pulmonary vasoconstriction after a transient pulmonary vasodilatation that was not seen in CDH animals. We conclude that the NO signaling pathway in vivo is intact in experimental CDH. In contrast, ET(A)-receptor blockade and ET(B)-receptor stimulation significantly differed in CDH animals compared with control animals. Imbalance of ET-1-receptor activation favoring pulmonary vasoconstriction rather than altered NO-mediated pulmonary vasodilatation is likely to account for persistent pulmonary hypertension of the newborn in fetal lambs with a surgically created CDH.  相似文献   

4.
Biliary cirrhosis in the rat triggers intrapulmonary vasodilatation and gas-exchange abnormalities that characterize the hepatopulmonary syndrome. This vasodilatation correlates with increased levels of pulmonary microcirculatory endothelial NO synthase (eNOS) and hepatic and plasma endothelin-1 (ET-1). Importantly, during cirrhosis, the pulmonary vascular responses to acute hypoxia are blunted. The purpose of this work was to examine the pulmonary vascular responses and adaptations to the combination of liver cirrhosis and chronic hypoxia (CH). In addition to hemodynamic measurements, we investigated whether pulmonary expression changes of eNOS, ET-1 and its receptors (endothelin A and B), or heme oxygenase 1 in experimental cirrhosis affect the development of hypoxic pulmonary hypertension. We induced cirrhosis in male Sprague-Dawley rats using common bile duct ligation (CBDL) and exposed them to CH (inspired PO2 approximately 76 Torr) or maintained them in Denver (Den, inspired PO2 approximately 122 Torr) for 3 wk. Our data show 1) CBDL-CH rats had a persistent blunted hypoxic pulmonary vasoconstriction similar to CBDL-Den; 2) the development of hypoxic pulmonary hypertension was completely prevented in the CBDL-CH rats, as indicated by normal pulmonary arterial pressure and lack of right ventricular hypertrophy and pulmonary arteriole remodeling; and 3) selective increases in expression of ET-1, pulmonary endothelin B receptor, eNOS, and heme oxygenase 1 are potential mechanisms of protection against hypoxic pulmonary hypertension in the CBDL-CH rats. These data demonstrate that unique and undefined hepatic-pulmonary interactions occur during liver cirrhosis and chronic hypoxia. Understanding these interactions may provide important information for the prevention and treatment of pulmonary hypertension.  相似文献   

5.
Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO(-) ) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO(-) donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24 h (with exogenous activation of cGMP) revealed increased ONOO(-) levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO(-) and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity.  相似文献   

6.
Endothelins build a peptide family composed of three isoforms, each of them containing 21 amino acids. Endothelin-1 is the isoform mainly responsible for any cardiovascular action and therefore the sole scope of this review. Endothelin-1 is the most potent endogenous vasoconstrictor known; in addition it acts as a potent (co)mitogen. There is a substantial body of experimental evidence that endothelin-1 may contribute not only to sustained vasoconstriction, but also to remodeling within the cardiovascular system. Thus, with the help of endothelin receptor antagonists (available for a few years) the involvement of mainly ETA receptors in structural diseases such as heart failure, pulmonary hypertension, atherosclerosis, restenosis, systemic hypertension, and chronic renal failure has been shown. These data make endothelin receptor antagonists, and especially those selective for the ETA receptor, promising agents for the treatment of chronic cardiovascular diseases associated with remodeling. Currently several chemically distinct, orally available members of this novel class of therapeutic agents are under clinical investigation.  相似文献   

7.
Endothelin (ET)-1 contributes to regulation of pulmonary vascular tone and structure in the normal ovine fetus and in models of perinatal pulmonary hypertension. The hemodynamic effects of ET-1 are due to activation of its receptors. The ET(A) receptor mediates vasoconstriction and smooth muscle cell proliferation, whereas the ET(B) receptor mediates vasodilation. In a lamb model of chronic intrauterine pulmonary hypertension, ET(B) receptor activity and gene expression are decreased. To determine whether prolonged ET(B) receptor blockade causes pulmonary hypertension, we studied the hemodynamic effects of selective ET(B) receptor blockade with BQ-788. Animals were treated with an infusion of either BQ-788 or vehicle for 7 days. Prolonged BQ-788 treatment increased pulmonary arterial pressure and pulmonary vascular resistance (P < 0.05). The pulmonary vasodilator response to sarafotoxin 6c, a selective ET(B) receptor agonist, was attenuated after 7 days of BQ-788 treatment, demonstrating pharmacological blockade of the ET(B) receptor. Animals treated with BQ-788 had greater right ventricular hypertrophy and muscularization of small pulmonary arteries (P < 0. 05). Lung ET-1 levels were threefold higher in the animals treated with BQ-788 (P < 0.05). We conclude that prolonged selective ET(B) receptor blockade causes severe pulmonary hypertension and pulmonary vascular remodeling in the late-gestation ovine fetus.  相似文献   

8.
Inhaled nitric oxide (NO) is a selective pulmonary vasodilator effective in treating persistent pulmonary hypertension in newborns and in infants following congenital heart disease surgery. Recently, multiple in vivo and in vitro studies have shown a negative effect of NO on surfactant activity as well as surfactant protein gene expression. Although the relationship between NO and surfactant has been studied previously, the data has been hard to interpret due to the model systems used. The objective of the current study was to characterize the effect of NO on surfactant protein gene expression in primary rat type II pneumocytes cultured on a substratum that promoted the maintenance of type II cell phenotype. Exposure to a NO donor, S-nitroso-N-acetylpenicillamine (SNAP), decreased surfactant protein (SP)-A, (SP)-B, and (SP)-C mRNA levels in type II pneumocytes in a time- and dose-dependent manner. The effect was mediated in part by an increase in endothelin-1 secretion and a decrease in the intracellular messenger, phosphorylated ERK1/2 mitogen-activated protein kinases (MAPK). Exposing type II pneumocytes to endothelin-1 receptor antagonists PD-156707 or bosentan before exposure to SNAP partially prevented the decrease in surfactant protein gene expression. The results showed that NO mediated the decrease in surfactant protein gene expression at least in part through an increase in endothelin-1 secretion and a decrease in phosphorylated ERK1/2 MAPKs.  相似文献   

9.

Background

Pulmonary arterial hypertension is usually fatal due to right ventricular failure and is frequently associated with co-existing left ventricular dysfunction. Endothelin-1 is a powerful pro-fibrotic mediator and vasoconstrictor that is elevated in pulmonary arterial hypertension. Endothelin receptor blockers are commonly used as pulmonary vasodilators, however their effect on biventricular injury, remodeling and function, despite elevated isolated right ventricular afterload is unknown.

Methods

Elevated right ventricular afterload was induced by progressive pulmonary artery banding. Seven rabbits underwent pulmonary artery banding without macitentan; 13 received pulmonary artery banding + macitentan; and 5 did not undergo inflation of the pulmonary artery band (sham-operated controls). Results: Right and left ventricular collagen content was increased with pulmonary artery banding compared to sham-operated controls and ameliorated by macitentan. Right ventricular fibrosis signaling (connective tissue growth factor and endothelin-1 protein levels); extra-cellular matrix remodeling (matrix-metalloproteinases 2 and 9), apoptosis and apoptosis-related peptides (caspases 3 and 8) were increased with pulmonary artery banding compared with sham-operated controls and decreased with macitentan.

Conclusion

Isolated right ventricular afterload causes biventricular fibrosis, right ventricular apoptosis and extra cellular matrix remodeling, mediated by up-regulation of endothelin-1 and connective tissue growth factor signaling. These pathological changes are ameliorated by dual endothelin receptor blockade despite persistent elevated right ventricular afterload.  相似文献   

10.
Utilizing aortopulmonary vascular graft placement in the fetal lamb, we have developed a model (shunt) of pulmonary hypertension that mimics congenital heart disease with increased pulmonary blood flow. Our previous studies have identified a progressive development of endothelial dysfunction in shunt lambs that is dependent, at least in part, on decreased nitric oxide (NO) signaling. The purpose of this study was to evaluate the possible role of a disruption in carnitine metabolism in shunt lambs and to determine the effect on NO signaling. Our data indicate that at 2 wk of age, shunt lambs have significantly reduced expression (P < 0.05) of the key enzymes in carnitine metabolism: carnitine palmitoyltransferases 1 and 2 as well as carnitine acetyltransferase (CrAT). In addition, we found that CrAT activity was inhibited due to increased nitration. Furthermore, free carnitine levels were significantly decreased whereas acylcarnitine levels were significantly higher in shunt lambs (P < 0.05). We also found that alterations in carnitine metabolism resulted in mitochondrial dysfunction, since shunt lambs had significantly decreased pyruvate, increased lactate, and a reduced pyruvate/lactate ratio. In pulmonary arterial endothelial cells cultured from juvenile lambs, we found that mild uncoupling of the mitochondria led to a decrease in cellular ATP levels and a reduction in both endothelial NO synthase-heat shock protein 90 (eNOS-HSP90) interactions and NO signaling. Similarly, in shunt lambs we found a loss of eNOS-HSP90 interactions that correlated with a progressive decrease in NO signaling. Our data suggest that mitochondrial dysfunction may play a role in the development of endothelial dysfunction and pulmonary hypertension and increased pulmonary blood flow.  相似文献   

11.
Acute partial compression of the fetal ductus arteriosus (DA) results in an initial increase in pulmonary blood flow (PBF) that is followed by acute vasoconstriction. The objective of the present study was to determine the role of nitric oxide (NO)-endothelin-1 (ET-1) interactions in the acute changes in pulmonary vascular tone after in utero partial constriction of the DA. Twelve late-gestation fetal lambs (132-140 days) were instrumented to measure vascular pressures and left PBF. After a 24-h recovery period, acute constriction of the DA was performed by partially inflating a vascular occluder, and the hemodynamic variables were observed for 4 h. In control lambs (n = 7), acute ductal constriction initially increased PBF by 627% (P < 0.05). However, this was followed by active vasoconstriction, such that PBF was restored to preconstriction values by 4 h. This was associated with a 43% decrease in total NO synthase (NOS) activity (P < 0.05) and a 106% increase in plasma ET-1 levels (P < 0.05). Western blot analysis demonstrated no changes in lung tissue endothelial NOS, preproET-1, endothelin-converting enzyme-1, or ET(B) receptor protein levels. The infusion of PD-156707 (an ET(A) receptor antagonist, n = 5) completely blocked the vasoconstriction and preserved NOS activity. These data suggest that the fetal pulmonary vasoconstriction after acute constriction of the DA is mediated by NO-ET-1 interactions. These include an increase in ET(A) receptor-mediated vasoconstriction and an ET(A) receptor-mediated decrease in NOS activity. The mechanisms of these NO-ET-1 interactions, and their role in mediating acute changes in PBF, warrant further studies.  相似文献   

12.
Congenital heart disease associated with increased pulmonary blood flow produces pulmonary hypertension. To characterize vascular alterations in the nitric oxide (NO)-cGMP cascade induced by increased pulmonary blood flow and pulmonary hypertension, 10 fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt). When the lambs were 4-6 wk of age, we assessed responses of pulmonary arteries (PAs) and pulmonary veins (PVs) isolated from lungs of control and shunted lambs. PVs from control and shunted lambs relaxed similarly to exogenous NO (S-nitrosyl-acetyl-penicillamine), to NO produced endogenously (zaprinast and A-23187), and to cGMP (atrial natriuretic peptide). In contrast, relaxations to A-23187 and zaprinast were blunted in PAs isolated from shunted lambs relative to controls. Inhibitors of NO synthase (NOS) and soluble guanylate cyclase constricted control but not shunt PAs, indicating reduced basal NOS activity in shunt PAs. Pretreatment of shunt PAs with the substrates L-arginine and sepiapterin, a precursor for tetrahydrobiopterin synthesis, did not augment A-23187 relaxations. However, pretreatment with superoxide dismutase and catalase significantly enhanced A-23187 relaxations in shunt PAs. We conclude that increased pulmonary blood flow induces an impairment of endothelium-dependent relaxation that is selective to PAs. The impaired relaxation may be mediated in part by excess superoxide production.  相似文献   

13.
Utilizing aortopulmonary vascular graft placement, we established a lamb model of pulmonary hypertension that mimics congenital heart disease with increased pulmonary blood flow. We previously demonstrated that endothelial nitric oxide synthase (eNOS) is increased in lambs at age 4 wk. However, these lambs display a selective impairment of endothelium-dependent pulmonary vasodilation that is suggestive of a derangement downstream of NO release. Thus our objective was to characterize potential alterations in the expression and activity of soluble guanylate cyclase (sGC) and phosphodiesterase type 5 (PDE5) induced by increased pulmonary blood flow and pulmonary hypertension. Late-gestational fetal lambs (n = 10) underwent in utero placement of an aortopulmonary vascular graft (shunt). Western blotting analysis on lung tissue from 4-wk-old shunted lambs and age-matched controls showed that protein for both subunits of sGC was increased in shunted lamb lungs compared with age-matched controls. Similarly, cGMP levels were increased in shunted lamb lungs compared with age-matched controls. However, PDE5 expression and activity were also increased in shunted lambs. Thus although cGMP generation was increased, concomitant upregulation of PDE5 expression and activity may have (at least partially) limited and accounted for the impairment of endothelium-dependent pulmonary vasodilation in shunted lambs.  相似文献   

14.
Chronic hypoxia causes pulmonary hypertension and pulmonary vascular remodeling in rats. Because platelet-activating factor (PAF) levels increase in lung lavage fluid and in plasma from chronically hypoxic rats, we examined the effect of two specific, structurally unrelated PAF antagonists, WEB 2170 and BN 50739, on hypoxia-induced pulmonary vascular remodeling. Treatment with either agent reduced hypoxia-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk of hypoxic exposure (simulated altitude 5,100 m) but did not affect cobalt (CoCl2)-induced pulmonary hypertension. The PAF antagonists had no effect on the hematocrit of normoxic or chronically hypoxic rats or CoCl2-treated rats. Hypoxia-induced pulmonary hypertension was associated with an increase in the vessel wall thickness of the muscular arteries and reduction in the number of peripheral arterioles. In WEB 2170-treated rats, these changes were significantly less severe than those observed in untreated chronically hypoxic rats. PAF receptor blockade had no acute hemodynamic effects; i.e., it did not affect pulmonary arterial pressure or cardiac output nor did it affect the magnitude of acute hypoxic pulmonary vasoconstriction in awake normoxic or chronically hypoxic rats. Isolated lungs from chronically hypoxic rats showed a pressor response to the chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP) and an increase in the number of leukocytes lavaged from the pulmonary circulation. In vivo treatment with WEB 2170 significantly reduced the fMLP-induced pressor response compared with that observed in isolated lungs from untreated chronically hypoxic rats. These results suggest that PAF contributes to the development of chronic pulmonary hypertension induced by chronic hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Altered pulmonary vascular reactivity is a source of morbidity and mortality for children with congenital heart disease and increased pulmonary blood flow. Nitric oxide (NO) and endothelin (ET)-1 are important mediators of pulmonary vascular reactivity. We hypothesize that early alterations in endothelial function contribute to the altered vascular reactivity associated with congenital heart disease. The objective of this study was to characterize endothelial function in our lamb model of increased pulmonary blood flow at 1 wk of life. Eleven fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt) and were studied 7 days after delivery. The pulmonary vasodilator response to both intravenous ACh (endothelium dependent) and inhaled NO (endothelium independent) was similar in shunted and control lambs. In addition, tissue NO(x), NO synthase (NOS) activity, and endothelial NOS protein levels were similar. Conversely, the vasodilator response to both ET-1 and 4Ala-ET-1 (an ET(B) receptor agonist) were attenuated in shunted lambs, and tissue ET-1 concentrations were increased (P < 0.05). Associated with these changes were an increase in ET-converting enzyme-1 protein and a decrease in ET(B) receptor protein levels (P < 0.05). These data demonstrate that increased pulmonary blood flow induces alterations in ET-1 signaling before NO signaling and suggest an early role for ET-1 in the altered vascular reactivity associated with increased pulmonary blood flow.  相似文献   

16.
In vitro evidence suggests that resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation are mediated by changes in vascular smooth muscle concentrations of guanosine 3',5'-cyclic monophosphate (cGMP). We investigated this hypothesis in vivo in 19 mechanically ventilated intact lambs by determining the hemodynamic effects of methylene blue (a guanylate cyclase inhibitor) and then by comparing the hemodynamic response to five vasodilators during pulmonary hypertension induced by the infusion of U-46619 (a thromboxane A2 mimic) or methylene blue. Methylene blue caused a significant time-dependent increase in pulmonary arterial pressure. During U-46619 infusions, acetylcholine, ATP-MgCl2, sodium nitroprusside, isoproterenol, and 8-bromo-cGMP decreased pulmonary arterial pressure. During methylene blue infusions, the decreases in pulmonary arterial pressure caused by acetylcholine and ATP-MgCl2 (endothelium-dependent vasodilators) and sodium nitroprusside (an endothelium-independent guanylate cyclase-dependent vasodilator) were attenuated by greater than 50%. The decreases in pulmonary arterial pressure caused by isoproterenol and 8-bromo-cGMP (endothelium-independent vasodilators) were unchanged. This study in intact lambs supports the in vitro evidence that changes in vascular smooth muscle cell concentrations of cGMP in part mediate resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation.  相似文献   

17.
Diabetes and arterial hypertension continue to be the main causes of chronic renal failure in 2010, with a rising prevalence in part due to the worldwide obesity epidemic. Proteinuria is a main feature of chronic renal disease and mediated by defects in the glomerular filtration barrier and is as a good predictor of cardiovascular events. Indeed, chronic renal disease due to glomerulosclerosis is one of the important risk factors for the development of coronary artery disease and stroke. Glomerulosclerosis develops in response to inflammatory activation and increased growth factor production. Preclinical and first preliminary clinical studies provide strong evidence that endogenous endothelin-1 (ET-1), a 21-amino-acid peptide with strong growth-promoting and vasoconstricting properties, plays a central role in the pathogenesis of proteinuria and glomerulosclerosis via activation of its ETA subtype receptor involving podocyte injury. These studies have not only shown that endothelin participates in the disease processes of hypertension and glomerulosclerosis but also that features of chronic renal disease such as proteinuria and glomerulosclerosis are reversible processes. Remarkably, the protective effects of endothelin receptors antagonists (ERAs) are present even on top of concomitant treatments with inhibitors of the renin–angiotensin system. This review discusses current evidence for a role of endothelin for proteinuric renal disease and podocyte injury in diabetes and arterial hypertension and reviews the current status of endothelin receptor antagonists as a potential new treatment option in renal medicine.  相似文献   

18.
Persistent pulmonary hypertension of the newborn (PPHN) is a clinical disorder characterized by abnormal vascular structure, growth, and reactivity. Disruption of vascular growth during early postnatal lung development impairs alveolarization, and newborns with lung hypoplasia often have severe pulmonary hypertension. To determine whether pulmonary hypertension can directly impair vascular growth and alveolarization in the fetus, we studied the effects of chronic intrauterine pulmonary hypertension on lung growth in fetal lambs. We performed surgery, which included partial constriction of the ductus arteriosus (DA) to induce pulmonary hypertension (PH, n = 14) or sham surgery (controls, n = 13) in fetal lambs at 112-125 days (term = 147 days). Tissues were harvested near term for measurement of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), mean linear intercepts (MLI), wall thickness, and vessel density of small pulmonary arteries. Chronic DA constriction caused RVH (P < 0.0001), increased wall thickness of small pulmonary arteries (P < 0.002), and reduced small pulmonary artery density (P < 0.005). PH also reduced alveolarization, causing a 27% reduction in RAC and 20% increase in MLI. Furthermore, prolonged DA constriction (21 days) not only decreased RAC and increased MLI by 30% but also caused a 25% reduction of lung-body weight ratio. We conclude that chronic PH reduces pulmonary arterial growth, decreases alveolar complexity, and impairs lung growth. We speculate that chronic hypertension impairs vascular growth, which disrupts critical signaling pathways regulating lung vascular and alveolar development, thereby interfering with alveolarization and ultimately resulting in lung hypoplasia.  相似文献   

19.
Similar to infants born with persistent pulmonary hypertension of the newborn (PPHN), there is an increase in circulating endothelin-1 (ET-1) and decreased cGMP-mediated vasodilation in an ovine model of PPHN. These abnormalities lead to vasoconstriction and vascular remodeling. Our previous studies have demonstrated that reactive oxygen species (ROS) levels are increased in pulmonary arterial smooth muscle cells (PASMC) exposed to ET-1. Thus the initial objective of this study was to determine whether the development of pulmonary hypertension in utero is associated with elevated production of the ROS hydrogen peroxide (H(2)O(2)) and if this is associated with alterations in antioxidant capacity. Second we wished to determine whether chronic exposure of PASMC isolated from fetal lambs to H(2)O(2) would mimic the decrease in soluble guanylate cyclase expression observed in the ovine model of PPHN. Our results indicate that H(2)O(2) levels are significantly elevated in pulmonary arteries isolated from 136-day-old fetal PPHN lambs (P 0.05). In addition, we determined that catalase and glutathione peroxidase expression and activities remain unchanged. Also, we found that the overnight exposure of fetal PASMC to a H(2)O(2)-generating system resulted in significant decreases in soluble guanylate cyclase expression and nitric oxide (NO)-dependent cGMP generation (P 0.05). Finally, we demonstrated that the addition of the ROS scavenger catalase to isolated pulmonary arteries normalized the vasodilator responses to exogenous NO. As these scavengers had no effect on the vasodilator responses in pulmonary arteries isolated from age-matched control lambs this enhancement appears to be unique to PPHN. Overall our data suggest a role for H(2)O(2) in the abnormal vasodilation associated with the pulmonary arteries of PPHN lambs.  相似文献   

20.
Partial ligation of the ductus arteriosus (DA) in the fetal lamb causes sustained elevation of pulmonary vascular resistance (PVR) and hypertensive structural changes in small pulmonary arteries, providing an animal model for persistent pulmonary hypertension of the newborn. Based on its vasodilator and antimitogenic properties in other experimental studies, we hypothesized that estradiol (E(2)) would attenuate the pulmonary vascular structural and hemodynamic changes caused by pulmonary hypertension in utero. To test our hypothesis, we treated chronically instrumented fetal lambs (128 days, term = 147 days) with daily infusions of E(2) (10 microg; E(2) group, n = 6) or saline (control group, n = 5) after partial ligation of the DA. We measured intrauterine pulmonary and systemic artery pressures in both groups throughout the study period. After 8 days, we delivered the study animals by cesarean section to measure their hemodynamic responses to birth-related stimuli. Although pulmonary and systemic arterial pressures were not different in utero, fetal PVR immediately before ventilation was reduced in the E(2)-treated group (2.43 +/- 0.79 vs. 1.48 +/- 0.26 mmHg. ml(-1). min, control vs. E(2), P < 0.05). During the subsequent delivery study, PVR was lower in the E(2)-treated group in response to ventilation with hypoxic gas but was not different between groups with ventilation with 100% O(2). During mechanical ventilation after delivery, arterial partial O(2) pressure was higher in E(2) animals than controls (41 +/- 11 vs. 80 +/- 35 Torr, control vs. E(2), P < 0. 05). Morphometric studies of hypertensive vascular changes revealed that E(2) treatment decreased wall thickness of small pulmonary arteries (59 +/- 1 vs. 48 +/- 1%, control vs. E(2), P < 0.01). We conclude that chronic E(2) treatment in utero attenuates the pulmonary hemodynamic and histological changes caused by DA ligation in fetal lambs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号