首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Impact of light limitation on seagrasses   总被引:2,自引:0,他引:2  
Seagrass distribution is controlled by light availability, especially at the deepest edge of the meadow. Light attenuation due to both natural and anthropogenically-driven processes leads to reduced photosynthesis. Adaptation allows seagrasses to exist under these sub-optimal conditions. Understanding the minimum quantum requirements for growth (MQR) is revealed when light conditions are insufficient to maintain a positive carbon balance, leading to a decline in seagrass growth and distribution. Respiratory demands of photosynthetic and non-photosynthetic tissues strongly influence the carbon balance, as do resource allocations between above- and below-ground biomass. Seagrass light acclimation occurs on varying temporal scales, as well as across spatial scales, from the position along a single leaf blade to within the canopy and finally across the meadow. Leaf absorptance is regulated by factors such as pigment content, morphology and physical properties. Chlorophyll content and morphological characteristics of leaves such as leaf thickness change at the deepest edge. We present a series of conceptual models describing the factors driving the light climate and seagrass responses under current and future conditions, with special attention on the deepest edge of the meadow.  相似文献   

2.
Morphology, total sulfur content and stable sulfur isotopic composition of Zostera marina were examined in the Baltic Sea–Skagerrak transition zone through surveys. The seagrass meadows were denser and less productive at the low salinities in the Baltic Sea (salinity 6–7 psu), and total sulfur accumulations in plants were lower and δ34S values were higher compared to the west coast of Sweden (salinity 21–29 psu). The δ34S values of the three plant compartments (leaves, rhizomes, roots) indicated lower sulfide invasion at low salinities, which was mainly due to environmental conditions (e.g. low epiphytic biomass, low sediment organic matter and low sulfate concentration) and plant characteristics (productivity, shoot morphology). Between 13% and 63% of the sulfur in the plants was derived from sediment sulfides with highest percentages in the roots (27–63%) and lower in rhizomes (13–50%) and leaves (14–51%). The high sulfide invasion on the west coast of Sweden was coincident with high sediment organic matter, probably increasing sulfide pressure on the plants, and high epiphytic biomass, probably constraining the oxygen dynamics in the plants and enhancing sulfide invasion. Regional and spatial variability in the δ34S were extensive, emphasizing the need for detailed analysis of local sources when applying stable sulfur isotopes in food web analyses. The observed invasion of sulfides suggests sulfide as a contributing factor to reported declines of Z. marina in the Skagerrak region.  相似文献   

3.
The small but diverse group of angiosperms known as seagrasses form submersed meadow communities that are among the most productive on earth. Seagrasses are frequently light-limited and, despite access to carbon-rich seawaters, they may also sustain periodic internal carbon limitation. They have been regarded as C3 plants, but many species appear to be C3–C4 intermediates and/or have various carbon-concentrating mechanisms to aid the Rubisco enzyme in carbon acquisition. Photorespiration can occur as a C loss process that may protect photosynthetic electron transport during periods of low CO2 availability and high light intensity. Seagrasses can also become photoinhibited in high light (generally>1000 μE m−2 s−1) as a protective mechanism that allows excessive light energy to be dissipated as heat. Many photosynthesis–irradiance curves have been developed to assess light levels needed for seagrass growth. However, most available data (e.g. compensation irradiance Ic) do not account for belowground tissue respiration and, thus, are of limited use in assessing the whole-plant carbon balance across light gradients. Caution is recommended in use of Ik (saturating irradiance for photosynthesis), since seagrass photosynthesis commonly increases under higher light intensities than Ik; and in estimating seagrass productivity from Hsat (duration of daily light period when light equals or exceeds Ik) which varies considerably among species and sites, and which fails to account for light-limited photosynthesis at light levels less than Ik. The dominant storage carbohydrate in seagrasses is sucrose (primarily stored in rhizomes), which generally forms more than 90% of the total soluble carbohydrate pool. Seagrasses with high Ic levels (suggesting lower efficiency in C acquisition) have relatively low levels of leaf carbohydrates. Sucrose-P synthase (SPS, involved in sucrose synthesis) activity increases with leaf age, consistent with leaf maturation from carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40°C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic ‘strategy’ that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism — controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy — remain to be resolved as directions in future research. Such research will strengthen the understanding needed to improve management and protection of these environmentally important marine angiosperms.  相似文献   

4.
Productivity measurements from carbon uptake have been suggested as good indicators of the physiological health of seagrasses. As seagrasses acquire carbon from the surrounding water, the rate of uptake often provide a good measure of the efficiency at which seagrasses meet their resource demands for growth. This rate is often used to assess the photosynthetic efficiency of the plants, a proxy for the physiological status of seagrass. This has special relevance to the Adelaide region as over 5000 ha of seagrasses have been lost from Adelaide coastal waters over the last 70 years, with much of this loss attributed to nutrient inputs from wastewater, industrial and stormwater discharges. This study used an in-situ inorganic carbon isotope-labelling and spike approach to obtain ecologically relevant estimates of seasonal variability in carbon uptake and its allocation in two species of temperate seagrass common to this coast (Amphibolis antarctica and Posidonia angustifolia). Uptake of carbon by the seagrass complex (leaves, roots, phytoplankton and epiphytes) was affected by both season and species. Carbon uptake rates of phytoplankton were generally higher than other components of the system. Uptake rates ranged from 0.01 mg C g− 1 DW h− 1 (summer) to 0.61 mg C g− 1 DW h− 1 (spring) in Posidonia and 0.02 mg C g− 1 DW h− 1 (summer) to 0.93 mg C g− 1 DW h− 1 (winter) in Amphibolis. Carbon uptake by the Amphibolis complex was higher than in the Posidonia complex. The Amphibolis complex had higher uptake rates in summer whereas the Posidonia complex was higher in spring. Fine sediments probably from a nearby dredging operation, are likely to have resulted in lower carbon uptake and a reduction in the above-ground and below-ground biomass in summer.  相似文献   

5.
Due to the increasing accessibility of waterways under coastal development, recreational boating is among the growing disturbances to seagrasses at the local scale. While previous studies indicate that in decreasing and fragmenting seagrass habitat, boating can impact the diverse faunal assemblages associated with this habitat, direct impacts of boat wake on phytal invertebrates have not been assessed. By sampling seagrass blades twice before, immediately after and 1 h after exposure to recreational boat wake, this study documented the displacement of macroinvertebrates from flapping seagrass blades. At wake-exposed sites, up to five-fold decreases in the total abundances of amphipods and polychaetes and two-fold deceases in taxon richness were evident from immediately before to immediately after the disturbance of wake. By contrast, at control sites, the abundance and richness of these taxa remained fairly unchanged during the study and in some cases even increased. Although many of the displaced taxa were mobile, additional sampling indicated that they did not completely recolonize seagrass patches within 1 h of the disturbance. Thus, in places where boat traffic is relatively frequent, permanent depression of abundances of macroinvertebrates in seagrass may occur. This is of concern given that macroinvertebrates fuel fisheries productivity. Thus, in areas with frequent and or intense boating activity, nursery functions of seagrass beds may be severely compromised.  相似文献   

6.
We investigated the effects of epiphytes on photosynthetic activity in a seagrass, Zostera marina. Parameters in our chlorophyll (Chl) fluorescence imaging technique, including Fo, Fm, and Fv/Fm, were monitored from leaf surfaces before and after those epiphytes were removed. Because of the uneven distribution of light intensities, Fm values at the margin of an image were underestimated while those in the central region were overestimated. Chl fluorescence emissions from all leaves except the youngest one were altered by the presence of epiphytes, which predominantly inhabited the surfaces of older leaves. Only a few were found lower on the plant where leaves were very close to each other. Regions where the epiphytes had been loosely bound before their gentle removal showed full restoration of photosynthetic performance to control levels afterward. However, only minor recovery of photosynthesis was found in areas that had been riddled with tightly bound epiphytes and were permanently damaged. In years 2002 and 2003, leaf productivity peaked in May and plummeted in November. More epiphytic diatoms were distributed when the seagrass biomass was larger, with pinnate diatoms dominating.  相似文献   

7.
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1–4 h) exposures of thermal stress (35–45 °C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm′. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm′ represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 °C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm′ qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 °C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40–45 °C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Niño event.  相似文献   

8.
9.
The antibacterial properties of the three seagrasses namely Cymodocea serrulata, Halophila ovalis and Zostera capensis were tested against the human pathogens Staphylococcus aureus, Bacillus cereus, B. subtilis, Escherichia coli, Salmonella paratyphi, Salmonella typhimurium and Micrococcus luteus, using six different solvents namely, petroleum ether, chloroform, ethyl acetate, acetone, methanol and water. Ethyl acetate and methanol extracts showed maximum activity against most of the pathogens when compared to other solvents. Experiments are underway to isolate active compound(s) implicated in controlling the growth of the pathogens in vitro.  相似文献   

10.
Synopsis Extensive limestone reefs are a characteristic feature of much of the coastline of Western Australia, and potentially represent a major habitat feature influencing the structure of the coastal fish community. The structure and temporal dynamics of the fish fauna and its relationships to nearshore patch reefs and surrounding habitat near Dongara, Western Australia, were examined using (1) diel gill-netting and (2) quantitative rotenone sampling of enclosed areas of substratum. Long-term and day-to-day variability of the fauna was low. Dominant species of gill-net collections were either associated with reefs or occurred in similar abundances at both reefs and surrounding sand/seagrass flats. The overall abundance, number of species and biomass of netted fishes was higher around reefs. Rotenone collections of the more sedentary species showed a similar pattern, but suggested, however, that a simple reef versus surrounding sand and seagrass habitat comparison is complicated by the canopy-forming seagrass Amphibolis that occurs on reef tops. Time of day had an important effect on overall fish abundance and number of species, with peaks occurring at crepuscular periods. This reflected dusk and dawn activity peaks of a dominant species rather than overlapping activities of many diurnal and nocturnal species. Diel switches between reef-edge habitat and surrounding sand/seagrass flats were uncommon despite expectations (based on literature examples) that patch reefs would function primarily as sheltering habitats and surrounding non-reef areas act as foraging habitat. High catches at reef-edge sites suggest that the majority of fishes forage on or near limestone patch reefs. Fish densities of around 0.8 individuals per m-2 of bottom on these Western Australian reefs are relatively high in comparison to visual census estimates obtained for temperate reef systems in South Australia and New Zealand, but similar to those obtained using comparable netting methods in temperate Australian seagrass systems.  相似文献   

11.
The analysis of the temporal changes in shoot density, areal leaf biomass, leaf growth and parameters of the photosynthesis–irradiance relationship of three tropical seagrass species (Enhalus acoroides, Thalassia hemprichii and Cymodocea rotundata), co-existing in a shallow subtidal meadow in Cape Bolinao, Philippines, shows that species-specific traits are significant sources of temporal variability, and indicates that these seagrass species respond differently to a common environmental forcing. Species-specific differences are much less important as source of variability of the temporal change in chlorophyll concentration of seagrass leaves. The results indicate that the temporal changes in photosynthetic performance of these seagrasses were driven by environmental forcing and their specific responses to it mostly, but the temporal change in their abundance and leaf growth was also controlled by other factors. The significant contribution of species-specific factors in the temporal changes of biomass, growth and photosynthetic performance of co-occurring seagrass species in Cape Bolinao should contribute to the maintenance of the multispecific, highly productive meadows characteristic of pristine coastal ecosystems in Southeast (SE) Asia.  相似文献   

12.
We investigated the antifungal chemical defenses and physiological responses of five seagrasses collected from nearshore seagrass beds from the Indian River Lagoon, Florida, against a panel of co-occurring marine fungi isolated from nearby coastal communities. Whole plant tissues from Thalassia testudinum, Halodule wrightii and Syringodium filiforme prevented overgrowth by three of the seven fungi used in this study. Organic extracts from four of the five seagrasses inhibited the growth of at least one fungal strain. The extract from Ruppia maritima exhibited the highest antifungal activity, inhibiting the growth of three fungi including the pathogen Lindra thalassiae. Among the fungal panel, Fusarium sp. 2 was the most susceptible to seagrass extracts, whereas none of the extracts disrupted the growth of Dendryphiella salina and Fusarium sp. 3. Under laboratory conditions fungal inoculation elicited hydrogen peroxide production in all specimens within 25 min post-inoculation as measured with a redox sensitive dichlorodihydrofluorescein diacetate (DCFH-DA) assay. The concentration of H2O2 released into the immediate vicinity of infected seagrasses varied between 0.10 and 0.85 μmol g−1 FW min−1 depending on seagrass species and pathogen combination. Longer term incubation (days) of T. testudinum with homogenates of D. salina or L. thallasiae resulted in the induction of caspase activity, a known proteolytic activator of apoptotic and inflammatory activities. The application of micromolar concentrations of H2O2 to blades of T. testudinum induced caspase activity suggesting that fungal detection, H2O2 production, and caspase activation occur in a consecutive order. The seagrasses examined in this study appear to use a combined strategy to combat fungal infection, including microbial chemical defenses and signaling pathways observed in terrestrial plants.  相似文献   

13.
Productivity of seagrasses can be controlled by physiological processes, as well as various biotic and abiotic factors that influence plant metabolism. Light, temperature, and inorganic nutrients affect biochemical processes of organisms, and are considered as major factors controlling seagrass growth. Minimum light requirements for seagrass growth vary among species due to unique physiological and morphological adaptations of each species, and within species due to photo-acclimation to local light regimes. Seagrasses can enhance light harvesting efficiencies through photo-acclimation during low light conditions, and thus plants growing near their depth limit may have higher photosynthetic efficiencies. Annual temperatures, which are highly predictable in aquatic systems, play an important role in controlling site specific seasonal seagrass growth. Furthermore, both thermal adaptation and thermal tolerance contribute greatly to seagrass global distributions. The optimal growth temperature for temperate species range between 11.5 °C and 26 °C, whereas the optimal growth temperature for tropical/subtropical species is between 23 °C and 32 °C. However, productivity in persistent seagrasses is likely controlled by nutrient availability, including both water column and sediment nutrients. It has been demonstrated that seagrasses can assimilate nutrients through both leaf and root tissues, often with equal uptake contributions from water column and sediment nutrients. Seagrasses use HCO3 inefficiently as a carbon source, thus photosynthesis is not always saturated with respect to DIC at natural seawater concentrations leading to carbon limitation for seagrass growth. Our understanding of growth dynamics in seagrasses, as it relates to main environmental factors such as light, temperature, and nutrient availability, is critical for effective conservation and management of seagrass habitats.  相似文献   

14.
Sixteen sites (area 1000 m2) within the mallee region of southern Western Australia were sampled for vascular plant species richness. Species richness ranged from 17 species per 1000m2 in a Halosarcia syncarpa salt-complex site and a Eucalyptus occidentalis tree mallee site, up to 48 species per 1000 m2 in a Eucalyptus angulosa-Eucalyptus tetragona shrub mallee site. Woodland, woodland/mallee and mallee sites consisted mainly of perennial species while shrubland sites and salt-complex sites had a higher percentage of ephemeral species. Sites with the highest species richness occurred on soils with the lowest nutrient content. Sites with lowest species numbers were those with severe habitat conditions or where better nutrient conditions may have provided the dominants with a competitive advantage to suppress associated species.  相似文献   

15.
Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its original range in comparison with soil from the expansion range. Tragopogon dubius is currently expanding from southern into north-western Europe and we examined how this plant species responds to soil communities from its original and expansion ranges. We compared the performance of T. dubius with that of the closely related Tragopogon pratensis , which has a natural occurrence along the entire latitudinal gradient. Inoculation with the rhizosphere soil from T. dubius populations of the original range had a more negative effect on plant biomass production than inoculation with rhizosphere soil from the expansion range. Interestingly, the nonrange expander T. pratensis experienced a net negative soil effect throughout this entire range. The effects observed in this species pair may be due to release from soil born enemies or accumulation of beneficial soil born organisms. If this phenomenon applies broadly to other species, then range expansion may enable plants species to show enhanced performance.  相似文献   

16.
17.
18.
The northern geographic limit for Halophila johnsonii and Halophila decipiens has been reported as Sebastian Inlet, within the Indian River Lagoon, Florida. Surveys conducted in August 2007 determined the new northern limit to be 21.5 km north of the previously known limit. This new northern limit is a 10% range extension for H. johnsonii, a federally threatened species. We conclude that these range extensions are recent, based on (1) the small size of patches; (2) unusually good water clarity conditions due to a recent drought; (3) recent mild/warmer winters; and (4) a recent mechanism for transporting propagules, the numerous hurricanes of 2004. Although this recent range extension is considered ephemeral, similar range extensions may have occurred in the past and may occur again in the future under favorable conditions given the high capacity of these two species for dispersal to favorable sites. The northern limits of these species should not be viewed as static locations; rather, they must be considered dynamic features.  相似文献   

19.
Abstract The respiration rates of Notonomus gravis (Chaudoir) and N.philippi (Newman) (Coleoptera: Carabidae) were measured at temperatures between 10°C and 45°C. Mature males of both species had higher respiration rates than mature females. There was no difference between the rates of teneral male and female beetles at 30°C. The difference in respiration rates between the sexes is attributed to the maternal behaviour, and decreased surface activity, of mature females.  相似文献   

20.
South–west Australia contains extensive seagrass meadows along 2,500 km of coastline from the shallow subtidal to 50+ m water depths, and in many of the 51 bar-built estuaries along the coast. There are geomorphological differences between the south and west coasts that result in different patterns of swell exposure influencing the processes that structure seagrass habitats. In this paper, ‘sheltered’, ‘exposed’ and ‘estuarine’ seagrass habitat types are defined for south–west Australia to synthesize processes influencing seagrass communities. Sheltered habitats in south–west Australia are characterized by high light, low to moderate water motion and sporadic disturbance from storms, making them ideal habitats for a diversity of seagrass assemblages. Exposed seagrass habitats are characterized by the presence of strong and consistent ocean swells (3–8 m), predominantly from the south or south–west and seagrasses exhibit a suite of adaptive traits to survive the effects of exposure to ocean swell and associated sand movement. These include morphological features such as heavy fiber reinforcement to strengthen the aboveground stems or leaves, deep vertical rhizomes and life history traits such as rapid growth and high seed set. Within estuarine habitats highly dynamic seagrass communities are the result of fluctuating annual cycles in temperature, light and salinity. Compared to global seagrass meadows, coastal south–west Australian seagrass habitats experience high light, low nutrients and high water movement. Despite these differences, similarities with other regions do exist and here we place the habitats of south–west Australia into a global context using comparative data. The wide array of morphology and life history traits displayed among seagrass species of south–west Australia are presented in a conceptual model including habitat type, physical stressors and seagrass responses. The combination of adaptations to the habitats and processes that define them make south–west Australia a region where there is an unusually high number of co-occurring seagrass species, the highest in the world for a temperate environment (19 species), and approaching the species diversity of many tropical environments. Linking aspects of seagrass habitat, physical aspects of the environment and seagrass life history provides a context for applying knowledge gained from seagrasses in south–west Australia to other coastal ecosystems throughout the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号