首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a simple (2)H NMR assay of the fractional contribution of gluconeogenesis to hepatic glucose output following ingestion of (2)H(2)O. The assay is based on the measurement of relative deuterium enrichment in hydrogens 2 and 3 of plasma glucose. Plasma glucose was enzymatically converted to gluconate, which displays fully resolved deuterium 2 and 3 resonances in its (2)H NMR spectrum at 14.1 T. The signal intensity of deuterium 3 relative to deuterium 2 in the gluconate derivative as quantitated by (2)H NMR was shown to provide a precise and accurate measurement of glucose enrichment in hydrogen 3 relative to hydrogen 2. This measurement was used to estimate the fractional contribution of gluconeogenesis to hepatic glucose output for two groups of rats; one group was fasted for 7 h and the other was fasted for 29 h. Rats were administered (2)H(2)O to enrich total body water to 5% over the last 4-5 h of each fasting period. For the 7-h fasted group, the hydrogen 3/hydrogen 2 enrichment ratio of plasma glucose was 0.32 +/- 0.09 (n = 7). This indicates that gluconeogenesis contributed 32 +/- 9% of total hepatic glucose output with glycogenolysis contributing the remainder. For the 29-h fasted group, the hydrogen 3/hydrogen 2 enrichment ratio of plasma glucose was 0.81 +/- 0.10 (n = 6), indicating that gluconeogenesis supplied the bulk of hepatic glucose output (81 +/- 10%).  相似文献   

2.
A method for determining the site and extent of deuterium (D) labeling of glucose by GC/MS and mass fragmentography was developed. Under chemical and electron impact ionization, ion clusters m/z 328, 242, 217, 212, and 187 of glucose aldonitrile pentaacetate and m/z 331 and 169 of pentaacetate derivative were produced. From the mass spectra of 13C- and D-labeled reference compounds, glucose carbon and hydrogen (C-H) positions included in these fragments were deduced to be m/z 328 = C1-C6, 2,3,4,5,6,6-H6; m/z 331 = C1-C6, 1,2,3,4,5,6,6-H7; m/z 169 = C1-C6, 1,3,4,5,6,6-H6; m/z 187 = C3-C6, 3,4,5,6,6-H5; m/z 212 = C1-C5, 2,3,4,5-H4; m/z 217 = C4-C6, 4,5,6,6-H4; and m/z 242 = C1-C4, 2,3,4-H3. After correction for isotope discrimination and deuterium-hydrogen exchange, the D enrichment of these fragments can be quantitated using selective ion monitoring, and the D enrichment of all C-H positions can be obtained by the difference in enrichment of the corresponding ion pairs. The validity of this approach was tested by examining D enrichment of known mixtures of 1-d1-, 2-d1-, 3-d1-, and 5,6,6-d3-glucose with unlabeled glucose and D enrichment of perdeuterated glucose using these fragments. This method was used to determine deuterium incorporation in C1 through C6 of blood glucose in fasted (24 h) rats infused with deuterated water. The distribution of deuterium was similar to that found by Postle and Bloxham (1980, Biochem. J. 192, 65-73). Approximately one deuterium atom was incorporated into C5 and only 75% deuterium atom was incorporated into C2. The enrichment of C2 and C6 of glucose relative to that of water indicated that 74 +/- 9% of plasma glucose was newly formed 4 h after the onset of deuterium infusion, and gluconeogenesis accounted for about 76 +/- 7% of the glucose 6-phosphate flux.  相似文献   

3.
Plasma glucose 2H enrichment was quantified by 2H NMR in patients with cirrhosis (n=6) and healthy subjects (n=5) fasted for 16 h and given 2H(2)O to approximately 0.5% body water. The percent contribution of glycogenolysis and gluconeogenesis to glucose production (GP) was estimated from the relative enrichments of hydrogen 5 and hydrogen 2 of plasma glucose. Fasting plasma glucose levels were normal in both groups (87+/-7 and 87+/-24 mg/dl for healthy and cirrhotic subjects, respectively). The percent contribution of glycogen to GP was smaller in cirrhotics than controls (22+/-7% versus 46+/-4%, P<0.001), while the contribution from gluconeogenesis was larger (78+/-7% versus 54+/-4%, P<0.001). In all subjects, glucose 6R and 6S hydrogens had similar enrichments, consistent with extensive exchange of 2H between body water and the hydrogens of gluconeogenic oxaloacetate (OAA). The difference in 2H-enrichment between hydrogen 5 and hydrogen 6S was significantly larger in cirrhotics, suggesting that the fractional contribution of glycerol to the glyceraldehyde-3-phosphate (G3P)-moiety of plasma glucose was higher compared to controls (19+/-6% versus 7+/-6%, P<0.01). In all subjects, hydrogens 4 and 5 of glucose had identical enrichments while hydrogen 3 enrichments were systematically lower. This reflects incomplete exchange between the hydrogen of water and that of 1-R-dihydroxyacetone phosphate (DHAP) or incomplete exchange of DHAP and G3P pools via triose phosphate isomerase.  相似文献   

4.
The contribution of gluconeogenesis to glucose production can be measured by enriching body water with (2)H(2)O to approximately 0.5% (2)H and determining the ratio of (2)H that is bound to carbon-5 vs. carbon-2 of blood glucose. This labeling ratio can be measured using gas chromatography-mass spectrometry after the corresponding glucose carbons are converted to formaldehyde and then to hexamethylenetetramine (HMT). We present a technique for integrating ion chromatograms that allows one to use only 0.05% (2)H in body water (i.e., 10 times less than the current dose). This technique takes advantage of the difference in gas chromatographic retention times of naturally labeled HMT and [(2)H]HMT. We discuss the advantage(s) of using a low dose of (2)H(2)O to quantify the contribution of gluconeogenesis.  相似文献   

5.
The purposes of this study were: 1) to obtain a measure of exogenous carbohydrate (CHO(Exo)) oxidation and plasma glucose kinetics during 5 h of exercise; and 2) to compare CHO(Exo) following the ingestion of a glucose solution (Glu) or a glucose + fructose solution (2:1 ratio, Glu+Fru) during ultraendurance exercise. Eight well-trained subjects exercised three times for 5 h at 58% maximum O2 consumption while ingesting either Glu or Glu+Fru (both delivering 1.5 g/min CHO) or water. The CHO used had a naturally high 13C enrichment, and five subjects received a primed continuous intravenous [6,6-2H2]glucose infusion. CHO(Exo) rates following the ingestion of Glu leveled off after 120 min and peaked at 1.24 +/- 0.04 g/min. The ingestion of Glu+Fru resulted in a significantly higher peak rate of CHO(Exo) (1.40 +/- 0.08 g/min), a faster rate of increase in CHO(Exo), and an increase in the percentage of CHO(Exo) oxidized (65-77%). However, the rate of appearance and disappearance of Glu continued to increase during exercise, with no differences between trials. These data suggest an important role for gluconeogenesis during the later stages of exercise. Following the ingestion of Glu+Fru, cadence (rpm) was maintained, and the perception of stomach fullness was reduced relative to Glu. The ingestion of Glu+Fru increases CHO(Exo) compared with the ingestion of Glu alone, potentially through the oxidation of CHO(Exo) in the liver or through the conversion to, and oxidation of, lactate.  相似文献   

6.
The purpose of the present study was to determine the effects of diet composition and exercise on glycerol and glucose appearance rate (Ra) and on nonglycerol gluconeogenesis (Gneo) in vivo. Male Wistar rats were fed a high-starch diet (St, 68% of energy as cornstarch, 12% corn oil) for a 2-wk baseline period and then were randomly assigned to one of four experimental groups: St (n = 7), high-fat (HF; 35% cornstarch, 45% corn oil; n = 8), St with free access to exercise wheels (StEx; n = 7), and HF with free access to exercise wheels (HFEx; n = 7). After 8 wk, glucose Ra when using [3-3H]glucose, glycerol Ra when using [2H5]glycerol (estimate of whole body lipolysis), and [3-13C]alanine incorporation into glucose (estimate of alanine Gneo) were determined. Body weight and fat pad mass were significantly (P < 0.05) decreased in exercise vs. sedentary animals only. The average amount of exercise was not significantly different between StEx (3,212 +/- 659 m/day) and HFEx (3,581 +/- 765 m/day). The ratio of glucose to alanine enrichment and absolute glycerol Ra (micromol/min) were higher (P < 0.05) in HF and HFEx compared with St and StEx rats. In separate experiments, the ratio of 3H in C-2 to C-6 of glucose from 3H2O (estimate of Gneo from pyruvate) was also higher (P < 0.05) in HF (n = 5) and HFEx (n = 5), compared with St (n = 5) and StEx (n = 5) rats. Voluntary wheel running did not significantly increase estimated alanine or pyruvate Gneo or absolute glycerol Ra. Voluntary wheel running increased (P < 0.05) glycerol Ra when normalized to fat pad mass. These data suggest that a high-fat diet can increase in vivo Gneo from precursors that pass through pyruvate. They also suggest that changes in the absolute rate of glycerol Ra may contribute to the high-fat diet-induced increase in Gneo.  相似文献   

7.
1. Expressions are derived for the steady-state measurement of the quantitative contribution of the liver-type pentose phosphate cycle to glucose metabolism by tissues. One method requires the metabolism of [5-14C]glucose followed by the isolation and degradation of glucose 6-phosphate. The second procedure involves the metabolism of [2-14C]glucose and the isolation and degradation of a triose phosphate derivative, usually lactate or glycerol. 2. Measurements of 14C in C-2 and C-5 of glucose 6-phosphate are required and the values of the C-2/C-5 ratios can be used to calculate the quantitative contribution of the L-type pentose cycle in all tissues. 3. The measurement of 14C in C-1, C-2 and C-3 of triose phosphate derivatives can be used to calculate the quantitative contribution of the L-type pentose cycle relative to glycolysis. 4. The effect of transaldolase and transketolase exchange reactions, reactions of gluconeogenesis and non-oxidative formation of pentose 5-phosphate, isotopic equilibration of triose phosphate pools and isotopic equilibration of fructose 6-phosphate and glucose 6-phosphate, which could interfere with a clear interpretation of the data using [2-14C]- and [5-14C]glucose are discussed.  相似文献   

8.
The deuterated water method is used extensively to measure gluconeogenesis in humans. This method assumes negligible exchange of the lower three carbons of fructose 6-phsophate via transaldolase exchange since this exchange will result in enrichment of carbon 5 of glucose in the absence of net gluconeogenesis. The present studies tested this assumption. 2H?O and acetaminophen were ingested and [1-13C]acetate infused in 11 nondiabetic subjects after a 16-h fast. Plasma and urinary glucuronide enrichments were measured using nuclear magnetic resonance spectroscopy before and during a 0.35 mU·kg FFM?1·min?1 insulin infusion. Rates of endogenous glucose production measured with [3-3H]- and [6,6-2H?]glucose did not differ either before (14.0 ± 0.7 vs. 13.8 ± 0.7 μmol·kg?1·min?1) or during the clamp (10.4 ± 0.9 vs. 10.9 ± 0.7 μmol·kg?1·min?1), consistent with equilibration and quantitative removal of tritium during triose isomerase exchange. Plasma [3-13C] glucose-to-[4-13C]glucose and urinary [3-13C] glucuronide-to-[4-13C]glucuronide ratios were <1.0 (P < 0.001) in all subjects both before (0.66 ± 0.04 and 0.60 ± 0.04) and during (059 ± 0.05 and 0.56 ± 0.06) the insulin infusion, respectively, indicating that ~35-45% of the labeling of the 5th carbon of glucose by deuterium was due to transaldolase exchange rather than gluconeogenesis. When corrected for transaldolase exchange, rates of gluconeogenesis were lower (P < 0.001) and glycogenolysis higher (P < 0.001) than uncorrected rates both before and during the insulin infusion. In conclusion, assuming negligible dilution by glycerol and near-complete triose isomerase equilibration, these data provide strong experimental evidence that transaldolase exchange occurs in humans, resulting in an overestimate of gluconeogenesis and an underestimate of glycogenolysis when measured with the 2H?O method. Use of appropriate 13C tracers provides a means of correcting for transaldolase exchange.  相似文献   

9.
To compare endogenous cholesterol biosynthesis measured by deuterium incorporation (DI) and mass isotopomer distribution analysis (MIDA), cholesterol fractional and absolute synthetic rates were measured simultaneously by both techniques under identical physiological conditions. Twelve subjects (22 to 39 years of age) underwent a dual stable isotope protocol, involving oral deuterium oxide administration and measurement of incorporation of deuterium into cholesterol coincident with constant infusion of sodium [1-(13)C]acetate and measurement of the mass isotopomer distribution pattern of newly synthesized cholesterol. Synthesis was determined over 24 h with a 7-h feeding period. Both methods yielded similar measurements of fractional cholesterol synthesis (7.8 +/- 2.5% day(-)(1) for DI vs. 6.9 +/- 2.2% day(-)(1) for MIDA). Correlation of fractional synthesis across techniques was strong (r = 0.84, P = 0.0007). Absolute synthesis rates were also not different at 24 h (13.4 +/- 4.3 mg kg(-)(1) day(-)(1) for DI vs. 11.9 +/- 3.6 mg kg(-)(1) day(-)(1) for MIDA, r = 0.79, P < 0.002).We conclude that despite different assumptions and analytical requirements, deuterium incorporation and MIDA yield similar rates of cholesterogenesis in humans when measurements are made over 24 h. The decision as to which method to adopt depends on available clinical and analytical facilities  相似文献   

10.
The diabetogenic effect of excess growth hormone (GH) such as that in acromegaly is well known. However, the contribution of the various components to hepatic glucose production (HGP) is not completely understood. In this study we evaluated insulin resistance, HGP, gluconeogenesis (GNG), and glycogenolysis (GLY) in five patients with acromegaly before and after pituitary microsurgery. Insulin resistance was estimated by the HOMA index. HGP was measured using a primed continuous (6,6- 2H2) glucose infusion, and GNG was measured from 2 H enrichment at carbons 2 and 5 of blood glucose on ingestion of 2H2O. The ratio of these enrichments equals the fractional contribution of GNG to HGP, and GLY was calculated as the difference between HGP and GNG. All measurements were performed after 12 hours of fasting. Levels of GH and IGF-I decreased, as did the HOMA index (p<0.05). HGP was reduced from 11.4 micromol/kg/min to 9.7 micromol/kg/min (p=0.032). GNG contributed most to HGP. GNG was unchanged, whereas GLY's fraction decreased 29% (p=0.056) postoperatively. This pilot study indicates that GNG is the main contributor to HGP and that GLY is more sensitive than is GNG to the insulin resistance existing in acromegaly.  相似文献   

11.
Sources of plasma glucose excursions (PGE) following a glucose tolerance test enriched with [U-(13)C]glucose and deuterated water were directly resolved by (13)C and (2)H Nuclear Magnetic Resonance spectroscopy analysis of plasma glucose and water enrichments in rat. Plasma water (2)H-enrichment attained isotopic steady-state within 2-4 minutes following the load. The fraction of PGE derived from endogenous sources was determined from the ratio of plasma glucose position 2 and plasma water (2)H-enrichments. The fractional gluconeogenic contributions to PGE were obtained from plasma glucose positions 2 and 5 (2)H-positional enrichment ratios and load contributions were estimated from plasma [U-(13)C]glucose enrichments. At 15 minutes, the load contributed 26±5% of PGE while 14±2% originated from gluconeogenesis in healthy control rats. Between 15 and 120 minutes, the load contribution fell whereas the gluconeogenic contribution remained constant. High-fat fed animals had significant higher 120-minute blood glucose (173±6 mg/dL vs. 139±10 mg/dL, p<0.05) and gluconeogenic contributions to PGE (59±5 mg/dL vs. 38±3 mg/dL, p<0.01) relative to standard chow-fed controls. In summary, the endogenous and load components of PGE can be resolved during a glucose tolerance test and these measurements revealed that plasma glucose synthesis via gluconeogenesis remained active during the period immediately following a glucose load. In rats that were placed on high-fat diet, the development of glucose intolerance was associated with a significantly higher gluconeogenic contribution to plasma glucose levels after the load.  相似文献   

12.
The pathways of glycogen synthesis from glucose were studied using double-isotope procedures in 18-day cultured foetal-rat hepatocytes in which glycogenesis is strongly stimulated by insulin. When the medium containing 4 mM-glucose was supplemented with [2-3H,U-14C]glucose or [3-3H,U-14C]glucose, the ratios of 3H/14C in glycogen relative to that in glucose were 0.23 +/- 0.04 (n = 6) and 0.63 +/- 0.09 (n = 8) respectively after 2 h. This indicates that more than 75% of glucose was first metabolized to fructose 6-phosphate, whereas 40% reached the step of the triose phosphates prior to incorporation into glycogen. The stimulatory effect of 10 nM-insulin on glycogenesis (4-fold) was accompanied by a significant increase in the (3H/14C in glycogen)/(3H/14C in glucose) ratio with 3H in the C-2 position (0.29 +/- 0.05, n = 6, P less than 0.001) or in the C-3 position (0.68 +/- 0.09, n = 8, P less than 0.01) of glucose, whereas the effect of a 12 mM-glucose load (3.5-fold) did not alter these ratios. Fructose (4 mM) displaced [U-14C]glucose during labelling of glycogen in the presence and absence of insulin by 50 and 20% respectively, and produced under both conditions a similar increase (45%) in the (3H/14C in glycogen)/(3H/14C in glucose) ratio when 3H was in the C-2 position. 3-Mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis from lactate/pyruvate, further decreased the already poor labelling of glycogen from [U-14C]alanine, whereas it increased both glycogen content and incorporation of label from [U-14C]serine and [U-14C]glucose with no effect on the relative 3H/14C ratios in glycogen and glucose with 3H in the C-3 position of glucose. These results indicate that an alternative pathway in addition to direct glucose incorporation is involved in glycogen synthesis in cultured foetal hepatocytes, but that insulin preferentially favours the classical direct route. The alternative foetal pathway does not require gluconeogenesis from pyruvate-derived metabolites, contrary to the situation in the adult liver.  相似文献   

13.
Triacylglycerol (TAG) storage and turnover rates in the intact, beating rat heart were determined for the first time using dynamic mode (13)C- NMR spectroscopy to elucidate profound differences between hearts from diabetic rats (DR, streptozotocin treatment) and normal rats (NR). The incorporation of [2,4,6,8,10,12,14,16-(13)C(8)]palmitate into the TAG pool was monitored in isolated hearts perfused with physiological (0.5 mM palmitate, 5 mM glucose) and elevated substrate levels (1.2 mM palmitate, 11 mM glucose) characteristic of the diabetic condition. Surprisingly, although the normal hearts were enriched at a near-linear profile for >or=2 h before exponential characterization, exponential enrichment of TAG in diabetic hearts reached steady state after only 45 min. Consequently, TAG turnover rate was determined by fitting an exponential model to enrichment data rather than conventional two-point linear analysis. In the high-substrate group, both turnover rate (DR 820+/- 330, NR 190 +/-150 nmol.min(-1).g(-1) dry wt; P< 0.001) and [TAG] content (DR 78 +/-10, NR 32+/- 4 micromol/g dry wt; P< 0.001) were greater in the diabetic group. At lower substrate concentrations, turnover was greater in diabetics (DR 530+/-300, NR 160+/- 30; P<0.05). However, this could not be explained by simple mass action, because [TAG] content was similar between groups [DR 34+/- 7, NR 39+/- 9 micromol/g dry wt; not significant (NS)]. Consistent with exponential enrichment data, (13)C fractional enrichment of TAG was lower in diabetics (low- substrate groups: DR 4+/-1%, NR 10+/- 4%, P<0.05; high-substrate groups: DR 8+/- 3%, NR 14+/- 9%, NS), thereby supporting earlier speculation that TAG is compartmentalized in the diabetic heart.  相似文献   

14.
Deuterium transfer from [1,1-2-H]ethanol (95 atoms % excess) to reducible substrates was studied in the isolated perfused rat liver. The dueterium excess in cyclohexanol formed from cyclohexanone was somewhat lower (49 atoms%) than found under conditions in vivo, and this was also true of the deuterium excess in lithocholic acid formed from 3-oxo-5beta-cholanoic acid. These results may reflect a slower rate of ethanol oxidation in the isolated organ than in vivo. Cycloserine decreased the dueterium transfer to both substrates, whereas addition of lactate and malate resulted in an increased deuterium excess in cyclohexanol and a decreased deuterium excess in lithocholic acid. Addition of heavy water to the perfusion fluid resulted in labelling at C-3 of lithocholic acid formed from 3-oxo-5beta-cholanoic acid, and at C-3, C-4 and C-5 of 3alpha-hydroxy-5alpha-cholanoic acid formed from 3-oxo-4-cholenoic acid. The deuterium excess of hydrogens derived from NADPH (at C-3 and C-5) was approximately the same as that of hydrogen derived directly from water (at C-4). Thus, the hydrogen of NADPH is extensively exchanged with protons of water, which explains the dilution of deuterium with protium during the transfer from [1,1-2-H]ethanol via NADPH to the bile acids. The labelling at C-5 in the reduction of the 4,5-double bond indicates that different pools of NADPH are used for reduction of this double bond and the 3-oxo group, since in a previous study it was shown that deuterium is transferred from [1,1-2-H]ethanol only in the latter reaction.  相似文献   

15.
We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O(2) uptake, seven subjects received, in random order, either a sodium lactate infusion (60 micromol x kg(-1) x min(-1)) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring (2)H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (R(a)) was measured by [6,6-(2)H(2)]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 +/- 0.6 mM (mean +/- SE). Exercise induced a decrease in blood glucose concentration from 5.0 +/- 0.2 to 4.2 +/- 0.3 mM (P < 0.05); lactate infusion abolished this decrease (5.0 +/- 0.3 mM; P < 0.001) and increased glucose R(a) compared with bicarbonate infusion (P < 0.05). Lactate infusion increased both GNG from lactate (29 +/- 4 to 46 +/- 4% of glucose R(a), P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1). increased GNG from lactate and 2). increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.  相似文献   

16.
Owing to the fermentative nature of their digestion, ruminant animals are highly dependent upon gluconeogenesis to meet their glucose needs. The role of hormones in regulating this process is not clear. The purpose of this study was to examine the effect of insulin on the utilization of lactate in glucose synthesis in sheep. The euglycemic model was used in sheep. [U-14C]Lactate and [6-3H]glucose were infused to monitor lactate and glucose fluxes. Hepatic metabolism was measured using radioisotopic and venoarterial concentration difference techniques. Insulin concentrations increased from basal concentrations of 16 +/- 2 to 95 +/- 9 microU/mL. Insulin reduced the net hepatic utilization of lactate (303 +/- 43 vs. 120 +/- 27 mumol/min), hepatic extraction efficiency of lactate (29 +/- 4 vs. 9 +/- 2%), hepatic output of glucose (338 +/- 33 vs. 103 +/- 21 mumol/min), and incorporation of lactate into glucose (90 +/- 5 vs. 46 +/- 8 mumol/min). Insulin at physiological levels can inhibit hepatic gluconeogenesis in ruminants.  相似文献   

17.
The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.  相似文献   

18.
A preparation containing 80.0 +/- 0.5% (2RS)-methylmalonyl-carba-(dethia)-CoA and 20.0 +/- 0.5% propionyl-carba-(dethia)-CoA was reacted in buffered deuterium oxide with catalytic amounts of coenzyme B12, methylmalonyl-CoA mutase and methylmalonyl-CoA epimerase. The rearrangement of the methylmalonyl-carba-(dethia)-CoA to succinyl-carba-(dethia)-CoA was monitored by recording 500-MHz 1H-NMR spectra in short time intervals. After reaching equilibrium (approximately equal to 28 min) the products showed chemical stability for about 17 h, i.e. succinyl species did not undergo the spontaneous hydrolysis encountered with normal succinyl-CoA. In the pre-equilibrium stage only about 66% of the produced succinyl-CH2CoA was the expected monodeuterated species. The remainder was 15.5% unlabelled and 18.3% 3,3-dideuterated. After reaching equilibrium a continuous deuterium incorporation (washing-in) from the solvent to the products was observed and quantified. The time course of the appearance of unlabelled, mono-, di- and trideuterated succinyl-CH2CoA species was determined by assigning and integrating the isotope-shifted 1H signals from the various species. Furthermore, mutase catalyses slow deuterium incorporation into first the methylene and then the methyl group of propionyl-CH2CoA. On the basis of these data it was concluded that methylmalonyl-CoA mutase and epimerase are responsible for continuous deuterium incorporation and multiple incorporation occurs when the backward reaction (succinyl-CH2CoA----methylmalonyl-CH2CoA) becomes important. To account for all of the results obtained with dethia and natural substrates we propose a new mutase mechanism whereby the enzyme can retain full stereospecificity at C-3 of succinyl while an internal 1,2-H shift to give a C-2 succinyl radical is responsible for partial scrambling of diastereotopic protons at C-3. This mechanism successfully predicts the observed deuterium disproportionation in succinyl species and the order of appearance of di- and trideuterated products via the washing-in process.  相似文献   

19.
Biosynthetic studies of the glycopeptide teicoplanin by (1)H and (13)C NMR   总被引:1,自引:0,他引:1  
The biosynthesis of the glycopeptide antibiotic teicoplanin was studied by growing a teicoplanin producing strain of Actinoplanes teichomyceticus (ATCC 31121) on glucose containing either 34.0% [1-(13)C]glucose or 9.7% [U-(13)C]glucose. The fractional enrichment pattern of teicoplanin produced in the medium containing [1-(13)C]glucose was obtained from a one-dimensional (13)C spectrum. The enrichment pattern showed characteristic peaks indicating that amino acids 3 and 7 are derived from acetate, whereas amino acids 1, 2, 4, 5, and 6 are derived from tyrosine. Multiplet structures in heteronuclear single quantum coherence spectra of teicoplanin produced in the medium containing [U-(13)C]glucose showed characteristic coupling patterns supporting these results. Fractional enrichment patterns and multiplet structures of the three sugars in teicoplanin showed that about 50% of the sugars have the same labeling pattern as the glucose substrate whereas the rest have a labeling pattern showing that they are reassembled, probably from precursors in the primary metabolism.  相似文献   

20.
The purpose of this study was to compare the oxidation of 13C-labeled glucose, fructose, and glucose polymer ingested (1.33 g.kg-1 in 19 ml.kg-1 water) during cycle exercise (120 min, 53 +/- 2% maximal O2 uptake) in six healthy male subjects. Oxidation of exogenous glucose and glucose polymer (72 +/- 15 and 65 +/- 18%, respectively, of the 98.9 +/- 4.7 g ingested) was similar and significantly greater than exogenous fructose oxidation (54 +/- 13%). A transient rise in plasma glucose concentration was observed with glucose ingestion only. However, plasma insulin levels were similar with glucose and glucose polymer ingestions and significantly higher than with water or fructose ingestion. Plasma free fatty acid and glycerol responses to exercise were blunted with carbohydrate ingestion. However, fat utilization was not significantly different with water (82 +/- 14 g), glucose (60 +/- 3 g), fructose (59 +/- 11 g), or glucose polymer ingestion (60 +/- 8 g). Endogenous carbohydrate utilization was significantly lower with glucose (184 +/- 22 g), glucose polymer (187 +/- 31 g), and fructose (211 +/- 18 g) than with water (239 +/- 30 g) ingestion. Plasma volume slightly increased with water ingestion (7.4 +/- 4.5%), but the decrease was similar with glucose (-7.6 +/- 5.1%) and glucose polymer (-8.2 +/- 4.6%), suggesting that the rate of water delivery to plasma was similar with the two carbohydrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号