首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A neutral thiol protease was isolated from the extract of larvae of the mammalian trematode parasite, Paragonimus westermani metacercariae, by arginine-Sepharose, Ultrogel AcA-54 and DEAE-toyopearl column chromatography, measuring its activity by the hydrolysis of Boc-Val-Leu-Lys-MCA as a substrate. 2. The molecular weight of the purified enzyme was estimated to be 22,000 as a single polypeptide by SDS-polyacrylamide gel electrophoresis and was estimated to be 20,000 by size exclusion high-performance liquid chromatography. 3. The activity was suppressed by antipain, E-64, leupeptin, chymostatin, N-tosyl-L-lysine chloromethyl ketone, but was not affected by metallo protease inhibitors or serine protease inhibitors. 4. Studies on the substrate specificity showed that the enzyme hydrolyzed Boc-Val-Leu-Lys-MCA, Z-Phe-Arg-MCA, fluorescein isothiocyanate-labeled collagen, azocoll and casein. 5. The enzyme was found to hydrolyze peptide bonds of oxidized insulin B chain preferentially at the carboxy side of hydrophobic and basic amino acids.  相似文献   

2.
The enzymatic complete hydrolysis of casein was investigated by using immobilized endopeptidase and exopepti dase packed in the jacketed column reactors. The mass transfer efficiency of proteins was improved by using sliced shrimp chitin hull as enzyme support, which formed a network structure inside the column reactor that prevented the formation of protein precipitate and increased the line flow rate of protein solution. The specificity of the protease was of crucial importance for both the hydrolysis degree and the free amino acid content of the hydrolysates. Of the enzymes tested, the immobilized A. oryzae protease was the most effective enzyme in breaking down the casein molecules and releasing the free amino acid from casein hydrolysates. The immobilized pancreatic and kidney exopeptidase could lead to a 20% increase of free amino acids. The free amino acid content of casein hydrolysates was 34.81% after processing and could reach to 64% if the column length was doubled, but 100% hydrolysis was impossible as the reverse reaction was also taking place. The casein hydrolysates was characterized by its high degree of hydrolysis and high content of free amino acids. It can be applied in infant formula, element diet, and as a protein ingredient for food industry.  相似文献   

3.
A new, gentle enzymatic method was developed for a controlled removal of casein layers from medieval wall paintings. These casein layers were applied over the last 60 years on wall paintings in order to decrease substantial damage due to a peeling off of the frescoes from the roughcast surface due to environmental effects. However, due to the aging of the casein layers (at 40-50 years), a more drastic peeling occurred and the danger of total destruction of the wall paintings is severe. Thus, screening was performed to find the most suitable enzyme for casein digestion. Alcalase 2.5 DX L was the most appropriate enzyme for an effective proteolysis reaction. The enzyme was immobilized on functionalized cellulose membrane. A membrane pad system with immobilized enzymes was developed which could be pressed on the casein layers on the wall painting. A controlled removal of the casein layers by proteolytic digestion was observed and it was possible to continuously wash off the hydrolyzed casein fragments from the wall painting surface by an aqueous carbonate buffer flowing through the membrane pad. The removal and the digestion was monitored by reverse HPLC. Additionally, an on-line monitoring system was set up in order to continuously follow the casein layer removal and the digestion procedure directly on the wall painting. This technique is based on noninvasive 2D-fluorescence monitoring. Optical fiber systems were used to continuously monitor the fluorescence intensity of casein-bound tryptophan. The off-line data were verified with the on-line 2D-fluorescence data. Based on the scientific result an appropriate technique for the controlled enzymatic removal of damaging casein layers on the surface of medieval wall paintings using immobilized enzyme is now available. It is now applied to remove such casein layers from medieval wall paintings in the Allerheiligen-Kapelle Cloister, Wienhausen, Germany, and the St. Alexander Kirche, Wildeshausen, Germany.  相似文献   

4.
Commercially available proteases and lipases were screened for their ability to acylate regioselectively sucrose with divinyladipate either in pyridine or dimethylformamide (DMF). The protease (EC 3.4.21.62) from Bacillus subtilis (Proleather FG-F) exhibited the highest conversion (100% in 24 h of reaction in DMF) yielding sucrose 2-O-vinyladipate as main product. The enzyme preference for a secondary hydroxyl group is a distinct feature of this biocatalyst compared to others described in the literature. Two sets of chemically distinct silica supports were used for Proleather immobilization presenting terminal amino (S(APTES)) or hydroxyl groups (S(TESPM)(-)(pHEMA)). The percentage of immobilized enzyme was smaller in S(APTES) (7-17%) than in S(TESPM)(-)(pHEMA) (52-56%), yet Proleather immobilized into S(APTES) supports presented higher total and specific hydrolytic activity. The highest total and specific activities were obtained with S(TESPM)(-)(pHEMA) and S(APTES), respectively. Silicas with large pore (bimodal distribution of pores, 130/1200 A, denoted as S(1000)) presented higher specific activities relative to those with smaller pore sizes. Furthermore, the synthetic specific activity of S(1000)S(APTES) immobilized protease was ca. 10-fold higher than that of the free enzyme. In addition to sucrose, the immobilized protease was used to acylate methyl alpha-D-glucopyranoside, trehalose, and maltose in nearly anhydrous DMF. Finally, immobilized Proleather was reasonably stable, retaining ca. 55% activity after six reaction cycles.  相似文献   

5.
A microbial protease was immobilized by covalent attachment, to porous glass. This material was characterized for pH optimum, thermal stability, and operational half–life using casein as substrate. The immobilized enzyme was used for preparation of soya hydrolysates, low in free amino acids with high solubility.  相似文献   

6.
Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both SSF and SmF displayed similar optimum temperature at 50°C, but the optimum pH shifted from 7 (SmF) to 9(SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.  相似文献   

7.
Alcalase 2T, a commercial preparation of Subtilisin Carlsberg, was covalent immobilized onto physiochemically characterized silica supports. The effect of mean pore diameter and surface chemistry on enzyme activity in the hydrolysis of casein has been examined. Two sets of chemically distinct silica supports were used presenting terminal amino (SAPTES) or hydroxyl groups (STESPM-pHEMA). The percentage of immobilized protein was smaller in SAPTES (31–39%) than in STESPM-pHEMA (62–71%), but presented higher total and specific activity. Silicas with large pores (S1000, 130/1200 Å) presented higher specific activities relative to those with smaller pore sizes (S300, 130/550 Å). The influence of glutaraldehyde concentration and the time of enzyme coupling to the S1000SAPTES supports was examined. The apparent Km value for the S1000SAPTES immobilized enzyme is lower than the soluble one which may be explained by the partitioning effects of the substrate. No intraparticle diffusion limitations were observed for the immobilized enzyme and therefore the substrate diffusion does not influence the observable kinetics. Finally, the optimum pH, optimum temperature, thermal stability, operational stability, and storage stability of the immobilized and freely soluble enzymes were compared.  相似文献   

8.
T Wei  M Tao 《FEBS letters》1991,292(1-2):141-144
The relationship and substrate specificity of the human erythrocyte membrane kinase and casein kinase A were investigated. Based on Staphylococcus aureus V8 protease digestion patterns, the 2 kinases appeared to be structurally homologous. These enzymes also exhibited the same substrate specificity and phosphorylated the same synthetic peptides and domains of ankyrin. Both kinases did not utilize GTP effectively as a substrate and were not inhibited by low concentrations of heparin, suggesting that they were type I casein kinases. An analysis of synthetic peptide phosphorylation failed to reveal a specific pattern of recognition of the amino acid sequence surrounding the phosphorylation site.  相似文献   

9.
Protease Ti, a new ATP-dependent protease in Escherichia coli, degrades proteins and ATP in a linked process, but these two hydrolytic functions are catalyzed by distinct components of the enzyme. To clarify the enzyme's specificity and the role of ATP, a variety of fluorogenic peptides were tested as possible substrates for protease Ti or its two components. Protease Ti rapidly hydrolyzed N-succinyl(Suc)-Leu-Tyr-amidomethylcoumarin (AMC) (Km = 1.3 mM) which is not degraded by protease La, the other ATP-dependent protease in E. coli. Protease Ti also hydrolyzed, but slowly, Suc-Ala-Ala-Phe-AMC and Suc-Leu-Leu-Val-Tyr-AMC. However, it showed little or no activity against basic or other hydrophobic peptides, including ones degraded rapidly by protease La. Component P, which contains the serine-active site, by itself rapidly degrades the same peptides as the intact enzyme. Addition of component A, which contains the ATP-hydrolyzing site and is necessary for protein degradation, had little or no effect on peptide hydrolysis. N-Ethylmaleimide, which inactivates the ATPase, did not inhibit peptide hydrolysis. In addition, this peptide did not stimulate the ATPase activity of component A (unlike protein substrates). Thus, although the serine-active site on component P is unable to degrade proteins, it is fully functional against small peptides in the absence of ATP. At high concentrations, Suc-Leu-Tyr-AMC caused a complete inhibition of casein breakdown, and diisopropylfluorophosphate blocked similarly the hydrolysis of both protein and peptide substrates. Thus, both substrates seem to be hydrolyzed at the same active site on component P, and ATP hydrolysis by component A either unmasks or enlarges this proteolytic site such that large proteins can gain access to it.  相似文献   

10.
A crucial enzyme in the pathway for protein degradation in Escherichia coli is protease La, an ATP-hydrolyzing protease encoded by the lon gene. This enzyme degrades various proteins to small polypeptides containing 10-20 amino acid residues. To learn more about its energy requirement, we determined the number of ATP molecules hydrolyzed by the purified protease for each peptide bond cleaved. The enzyme hydrolyzed about 2 molecules of ATP for each new amino group generated with casein, bovine serum albumin, glucagon, or guanidinated casein as substrates, even though these proteins differ up to 20-fold in size and 3-4 fold in rates of hydrolysis of peptide bonds. Similar values for the stoichiometry (from 1.9 to 2.4) were obtained using fluorescamine or 2,4,6-trinitrobenzene sulfonic acid to estimate the appearance of new amino groups. These values appeared lower at 1 mM than at 10 mM Mg2+. The coupling between ATP and peptide bond hydrolysis appeared very tight. However, when the protease was assayed under suboptimal conditions (e.g. at lower pH or with ADP present), many more ATP molecules (from 3.5 to 12) were consumed per peptide bond cleaved. Our data would indicate that the early steps in protein degradation consume almost as much energy (2 ATPs for each cleavage) as does the formation of peptide bonds during protein synthesis.  相似文献   

11.
In addition to chitinase/lysozyme, Pseudomonas aeruginosa K-187 also produced a protease useful for the deproteinization of shrimp and crab shell wastes. The optimal culture conditions for P. aeruginosa K-187 to attain the highest protease activity were investigated and discussed. The highest protease activity was as high as 21.2 U/ml, 10-fold that (2.2 U/ml) obtained prior to optimization. The protease of P. aeruginosa K-187, produced under the optimal culture conditions, was tested for crustacean waste deproteinization. The percent of protein removal for shrimp and crab shell powder (SCSP) after 7-day incubation was 72%, while that of natural shrimp shell (NSS) and acid-treated SCSP was 78% and 45%, respectively. In contrast, with the protease produced under pre-optimization conditions, the percent of protein removal for SCSP, NSS, and acid-treated SCSP was 48%, 55%, and 40%, respectively. For comparison, three other protease-producing microbes were tested for crustacean waste deproteinization. However, they were shown to be less efficient in deproteinization than P. aeruginosa K-187. The crude protease produced by P. aeruginosa K-187 can be covalently immobilized on a reversibly soluble polymeric support (hydroxypropyl methycellulose acetate succinate). The immobilized enzyme was soluble above pH 5.5 but insoluble below pH 4.5. Immobilization efficiency was 82%. The immobilized enzyme was stable between pH 6 and 9 and at temperatures below 60 degrees C. The optimum pH and temperature for the immobilized enzyme was pH 8 and 50 degrees C. The half-life of the immobilized enzyme was 12 days, longer than that of free protease (8 days). The utilization of the immobilized enzyme for the deproteinization of SCSP has resulted in a 67% protein removal. By contrast, SCSP protein removal by using free enzymes was 72%. The protease was further purified and characterized. The purification steps included ammonium sulfate precipitation, DEAE-Sepharose CL-6B ion-exchange chromatography, and Sephacryl S-200 gel-permeation chromatography. The enzyme had a molecular weight estimated to be 58.8 kDa by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme was active from pH 7 to 9 and its optimal pH was 8.  相似文献   

12.
Immobilized artificial membrane (IAM) HPLC supports have been used to immobilize the enzymes alpha-chymotrypsin and trypsin. The enzymes were trapped in hydrophobic cavities on the support and were not covalently attached to the IAM surface. The resulting IAM-enzyme supports retained the hydrolytic activity of the immobilized enzymes: the IAM-trypsin support catalyzed the hydrolysis of N alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA), and the IAM-alpha-chymotrypsin support (IAM-ACHT) catalyzed the hydrolysis of a number of substrates, including tryptophan methyl ester. The activities of both supports were decreased by known enzyme inhibitors and the activity of the IAM-ACHT was affected by changes in pH and temperature. When a substrate was chromatographed on an IAM-ACHT HPLC, the hydrolytic activity of the immobilized enzyme could be determined from the resulting substrate/product ratios. These data were obtained either directly from the IAM-ACHT chromatogram or from the chromatogram produced by a coupled column system. The results of this study indicate that IAM-immobilized alpha-chymotrypsin and trypsin can be used as chromatographic probes for the qualitative determination of enzyme/substrate and enzyme/inhibitor interactions.  相似文献   

13.
Hydrolysis of three different proteins by either crude fish digestive extracts or purified mammal proteases was assayed using two different in vitro systems. The closed system was a modification of the pH-stat method including a previous acid digestion. The open system used a digestion cell containing a semi-permeable membrane which allowed continuous separation of the final products of hydrolysis with a molecular cut-off of 1000 Da. Assays in both systems resulted a similar arrangement of the tested proteins in relation to their ability to be hydrolyzed, with casein>fish meal> or =soybean meal. With the exception of casein, no significant differences were found between results produced by any of the enzyme sources using the closed system. In constrast, significantly higher hydrolysis of all proteins was produced by mammal enzymes under conditions operating in the open system. Differences in the rate of release of amino acids measured in this latter system were related both to the type of protein and the origin of the enzymes. When using purified mammal enzymes, release of lysine or phenylalanine from casein and soybean was high, but low from fishmeal. Isoleucine and valine present in fishmeal were preferentially hydrolyzed by commercial enzymes, but glycine and proline by fish enzymes.  相似文献   

14.
This work reports an optimization of protease from Penicillium aurantiogriseum immobilization on polyaniline-coated magnetic nanoparticles for antioxidant peptides’ obtainment derived from bovine casein. Immobilization process was optimized using a full two-level factorial design (24) followed by a response surface methodology. Using the derivative, casein was hydrolyzed uncovering its peptides that were sequenced and had antioxidant properties tested through (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) (ABTS) radical scavenging and hydrogen peroxide scavenging assays. Optimal conditions for immobilization were 2?hr of immobilization, offered protein amount of 200?µg/mL, immobilization pH of 6.3 and 7.3?hr of activation. Derivative keeps over 74% of its original activity after reused five times. Free and immobilized enzyme casein hydrolysates presented similar peptide mass fingerprints, and prevalent peptides could be sequenced. Hydrolysates presented more than 2.5× higher ROS scavenging activity than nonhydrolyzed casein, which validates the immobilized protease capacity to develop casein-derived natural ingredients with potential for functional foods.  相似文献   

15.
Alpha-amylase was produced from Penicillium griseofulvum by an SSF technique. Alpha-amylase was immobilized on Celite by an adsorption method. Various parameters, such as effect of pH and temperature, substrate concentration, operational and storage stability, ability to hydrolyze starch and products of hydrolysis were investigated; these findings were compared with the free enzyme. The activity yield of immobilization was 87.6%. The optimum pH and temperature for both enzymes were 5.5 degrees C and 40 degrees C, respectively. The thermal, and the operational and storage stabilities of immobilized enzyme were better than that of the free enzyme. Km and Vmax were calculated from Lineweaver-Burk plots for both enzymes. Km values were 9.1 mg mL(-1) for free enzyme, and 7.1 mg mL(-1) for immobilized enzyme. The Vmax of the immobilized enzyme was approximately 40% smaller than that of the free enzyme. The hydrolysis ability of the free and immobilized enzyme were determined as 99.3% and 97.9%, respectively. Hydrolysis products of the a-amylase from P. griseofulvum were maltose, unidentified oligosaccharides, and glucose.  相似文献   

16.
A serine endopeptidase with a molecular mass of 25 kDa has been purified from the culture filtrate of Trichoderma viride to electrophoretic homogeneity. The isoelectric point was determined at 7.3. Two carboxyl sites at Arg22 and Lys29 of the oxidized insulin B-chain were cleaved, and peptidyl-p-nitroanilide substrates with Lys or Arg at the P1 position were also hydrolyzed by the enzyme. These results suggest that the specificity of T. viride protease is similar to that of trypsin. However, the hydrolytic activity toward casein of T. viride protease was less than that of porcine trypsin. The amino-terminal sequence of the enzyme protein is similar to that of bovine trypsin. It seems that the trypsin of T. viride is a protease which is promising for the substitution of animal trypsin in the food industry and in medicine at this stage.  相似文献   

17.
An extracellular proteinase from Thermus strain Rt41A was immobilized to controlled pore glass (CPG) beads. The properties of the free and CPG-immobilized enzymes were compared using both a large (azocasein) and a small (peptidase) substrate. The specific activity of the immobilized proteinase was 5284 azoU/mg with azocasein and 144 sucU/mg for SucAAPFpNA. The percentage recovery of enzyme activity was unaffected by pore size when it was immobilized at a fixed level of activity/g of beads, whereas it increased with increasing pore size when added at a fixed level/m(2) of support. Saturation of the CPG beads was observed at 540 azoU/m(2) of 105-nm beads. Lower levels (50 azoU/m(2) of 50-nm beads) were used in characterization experiments. The pH optimum of the immobilized Rt41A proteinase was 8.0 for azocasein and 9.5 for SucAAPFpNA, compared with the free proteinase which was 10.5 for both substrates. The immobilized enzyme retained 65% of its maximum activity against azocasein at pH 12, whereas the free proteinase retained less than 10% under the same conditions. Stability at 80 degrees C increased on immobilization at all pH values between 5 and 11, the greatest increase in half-life being approximately 12-fold at pH 7.0. Temperature-activity profiles for both the free and immobilized enzymes were similar for both substrates. The stability of the immobilized proteinase, however, was higher than that of the free enzyme in the absence and presence of CaCl(2). Overall, the results show that low levels of calcium (10 muM) protect against thermal denaturation, but that high calcium or immobilization are required to protect against autolysis. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
A purified phosphotriesterase was successfully immobilized onto trityl agarose in a fixed bed reactor. A total of up to 9200 units of enzyme activity was immobilized onto 2.0 mL of trityl agarose (65 mumol trityl groups/mL agarose), where one unit is the amount of enzyme required to catalyze the hydrolysis of one micromole of paraoxon in one min. The immobilized enzyme was shown to behave chemically and kinetically similar to the free enzyme when paraoxon was utilized as a substrate. Several organophosphate pesticides, methyl parathion, ethyl parathion, diazinon, and coumaphos were also hydrolyzed by the immobilized phosphotriesterase. However, all substrates exhibited an affinity for the trityl agarose matrix. For increased solubility and reduction in the affinity of these pesticides for the trityl agarose matrix, methanol/water mixtures were utilized. The effect of methanol was not deleterious when concentrations of less than 20% were present. However, higher concentrations resulted in elution of enzyme from the reactor. With a 10-unit reactor, a 1.0 mM paraoxon solution was hydrolyzed completely at a flow rate of 45 mL/h. Kinetic parameters were measured with a 0.1-unit reactor with paraoxon as a substrate at a flow rate of 22 mL/h. The apparent K(m) for the immobilized enzyme was 3-4 times greater than the K(m) (0.1 mM) for the soluble enzyme. Immobilization limited the maximum rate of substrate hydrolysis to 40% of the value observed for the soluble enzyme. The pH-rate profiles of the soluble and immobilized enzymes were very similar. The immobilization of phosphotriesterase onto trityl agarose provides an effective method esterase onto trityl agarose provides an effective method for hydrolyzing and thus detoxifyuing organophosphate pesticides and mammalian acetylcholinesterase inhinbitors.  相似文献   

19.
A transformable strain of Bacillus subtilis 6160, a derivative of B. subtilis 168, produces three kinds of casein hydrolytic enzymes (alkaline protease, neutral protease, and esterase) in a culture medium. B. natto IAM 1212 produces 15 to 20 times as much total proteolytic activity as does B. subtilis. Extracellular proteases produced by the two strains were separated into each enzyme fraction by diethylaminoethyl-Sephadex A-50 column chromatography. The difference in the total protease activities of extracellular proteases between the two strains was due to the amount of neutral protease. The ratios of neutral protease activity to alkaline protease activity (N/A) were 1.1 in B. subtilis 6160 and 13.0 in B. natto IAM 1212. Enzymological and immunological properties of alkaline protease and neutral protease obtained from the two strains were quite similar or identical, respectively. Specific activities measured by an immunological analysis of the two neutral proteases against casein were also equal. A genetic character of high protease productivity in B. natto IAM 1212 was transferred to B. subtilis 6160 by the deoxyribonucleic acid-mediated transformation. Among 73 transformants that acquired high protease productivity, 69 produced a higher amount of neutral protease and the ratios of N/A were changed to 15 to 60. Three other strains were transformed in the productivity of neutral protease and alpha-amylase simultaneously, and one showed considerable change in the production of alkaline protease and neutral protease. The specific activities (casein hydrolytic activities/enzyme molecules) of neutral proteases from the representative four transformants were equal to those of the two parental strains. These results suggested the presence of a specific gene(s) that participated in the productivity of neutral protease in B. subtilis.  相似文献   

20.
The enzyme with high milk clotting activity produced by Irpex lacteus was partially purified by a CM-cellulose chromatography. Throughout the over-all process, the enzyme was purified approximately 9-fold from a crude powder with about 22.8% recovery of the original activity. The MCA/PU ratio of this fraction was 2.51 and the specific milk clotting activity was 188.7.

The purified enzyme is a sort of acid protease with optimum pH of 2.5 for casein digestion and 4.0 for hemoglobin digestion. The Lineweaver-Burk plot, when casein was used as a substrate, showed that the Km value of the enzyme was about 0.07% and the Vmax value was 0.4. The molecular weight of the enzyme is about 34,000, the isoelectric point is pH 5.2 and a ultraviolet absorption maximum is at 277 mμ. The enzyme has not yet been crystalized but seems to be a sort of glycoprotein, because the Molish reaction was positive at the present purification stage.

Some enzymological properties of the enzyme was studied and compared with those of a calf rennet and Mucor rennet. In some respects such as pH optima, pH stability, thermostability and temperature optima, the enzyme is Mucor rennet alike. On the other hand, as to the increase in activity along with decrease in pH of milk and the increase in activity along with the addition of Ca ion, the enzyme is not very different from the calf rennet. However, proteolysis of milk casein by the enzyme was fairly higher than by the calf rennet.

As to the production of enzymes, I. lacteus can produce at least three types of proteases into liquid media. When, for example, R medium was used, only one type of protease, that is the fraction A, could mainly be produced and it was this enzyme that assumed to be a rennet like enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号