首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
2.
The demethoxycarbonyl reaction of pheophorbide a in plants and algae was investigated. Two types of enzyme that catalyze alternative reactions in the formation of pyropheophorbide a were found. One enzyme, designated `pheophorbidase (Phedase)', was purified nearly to homogeneity from cotyledons of radish (Raphanus sativus). This enzyme catalyzes the conversion of pheophorbide a to a precursor of pyropheophorbide a, C-132-carboxylpyropheophorbide a, by demethylation, and then the precursor is decarboxylated non-enzymatically to yield pyropheophorbide a. The activity of Phedase was inhibited by the reaction product, methanol. The other enzyme, termed `pheophorbide demethoxycarbonylase (PDC)', was highly purified from the Chl b-less mutant NL-105 of Chlamydomonas reinhardtii. This enzyme had produced no intermediate as shown in the Phedase reaction, indicating that it converts pheophorbide a directly into pyropheophorbide a, probably by nucleophilic reaction. Phedase and PDC consisted of both senescence-induced and constitutive enzymes. The molecular weight of both Phedases was 113 000 and of senescence-induced PDC was 170 000. The K m values against pheophorbide a for both Phedases were 14–15 μM and 283 μM for senescence-induced PDC. The activity of both Phedases was inhibited by the reaction product, methanol, whereas methanol had no specific effect on senescence-induced PDC. Phenylmethylsulfonic fluoride and N-ethylmaleimide inhibited the senescence-induced Phedase and PDC, respectively. Among the 23 species from 15 different families tested, Phedase activity was found in 10 species from three families. PDC activity was not detected in plants lacking Phedase activity, except for Chlamydomonas. Based on these findings, a likely conclusion is that at least two alternative pathways that are catalyzed by two different enzymes, Phedase and PDC, exist for the formation of pyropheophorbide a. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The effect of methylmercuric iodide modification of sulfhydryl groups in soybean lipoxygenase-1 on linoleate oxidation, carbonyl production and beta-carotene and chlorophyll alpha bleaching were determined under aerobic and anaerobic conditions. Linoleate oxidation at pH 9.0 was strongly inhibited by modification of the enzyme. On the other hand, pigment bleaching was enhanced with the modified enzyme. Unmodified lipoxygenase-1 was not sensitive to chlorophyll inhibition, but activity of modified lipoxygenase-1 was affected. Linoleate oxidation was inhibited up to 70% when 2.2 microM chlorophyll was present in the reaction mixture. Chlorophyll inhibition was similar with affinity chromatography-purified lipoxygenase-2 and modified lipoxygenase-1. Unmodified lipoxygenase-1 exhibited high bleaching activity under anaerobic conditions and relatively low activity under aerobic (oxygen or air) conditions. Modified lipoxygenase-1 showed a significant increase in carotene and chlorophyll bleaching under both anaerobic and aerobic conditions. Under anaerobic conditions in the presence of either pigment, both modified and unmodified lipoxygenase-1 exhibited high 285 nm absorbing material production. Antioxidants (butylated hydroxyanisole, butylated hydroxytoluene, alpha-tocopherol, propyl gallate and tertiary butylated hydroxyquinone ) were powerful inhibitors of pigment bleaching by modified lipoxygenase-1. However, only tertiary butylated hydroxyquinone and propyl gallate blocked the increase in the rate of absorbance at 285 nm.  相似文献   

4.
Enzymatic degradation of dehydrodivanillin (DDV) was studied using high performance liquid chromatography (HPLC) with an anaerobic DDV-degrading recombinant FE7 under both aerobic and anaerobic conditions. When 200 mg of FE7 cells were mixed with 40 μg DDV in 1 ml phosphate buffer (0.01 M, pH 7.0) and 10 mM mercaptoethanol and incubated at 37°C for 24 h under an O2-free CO2 atmosphere, about 20 μg of DDV was decomposed. Only 12 μg DDV could be degraded when the same reaction was done under aerobic conditions, suggesting that the reaction occurs more easily under anaerobic than aerobic conditions. Enzymatic degradation of DDV was performed using a cell-free extract as a crude enzyme solution under aerobic conditions in a similar way. A reaction product detected and analysed by thin layer, high performance liquid and gas chromatographies and mass spectrometry was found to be vanillin from enzymatic reaction mixture. This enzymatic activity was not detected in either the culture supernatant or the heat-inactivated control. These results suggest that there may be an intracellular enzyme system which is involved in the conversion of DDV to vanillin. This is the first report to study the enzymatic degradation of DDV by anaerobes.  相似文献   

5.
The development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still needed. Antiviral compounds in medicinal plants are potentially good targets to study. Morinda citrifolia is a common plant distributed widely in Indo‐Pacific region; its fruits and leaves are food sources and are also used as a treatment in traditional medicine. In this study, using a HCV cell culture system, it was demonstrated that a methanol extract, its n‐hexane, and ethyl acetate fractions from M. citrifolia leaves possess anti‐HCV activities with 50%‐inhibitory concentrations (IC50) of 20.6, 6.1, and 6.6 μg/mL, respectively. Bioactivity‐guided purification and structural analysis led to isolation and identification of pheophorbide a, the major catabolite of chlorophyll a, as an anti‐HCV compound present in the extracts (IC50 = 0.3 μg/mL). It was also found that pyropheophorbide a possesses anti‐HCV activity (IC50 = 0.2 μg/mL). The 50%‐cytotoxic concentrations (CC50) of pheophorbide a and pyropheophorbide a were 10.0 and 7.2 μg/mL, respectively, their selectivity indexes being 33 and 36, respectively. On the other hand, chlorophyll a, sodium copper chlorophyllin, and pheophytin a barely, or only marginally, exhibited anti‐HCV activities. Time‐of‐addition analysis revealed that pheophorbide a and pyropheophorbide a act at both entry and the post‐entry steps. The present results suggest that pheophorbide a and its related compounds would be good candidates for seed compounds for developing antivirals against HCV.  相似文献   

6.
An anaerobic enrichment from lake mud yielded a pure culture of a facultatively anaerobic bacterium able to grow on malonate under strictly anaerobic conditions. Strain 16mal1 was identified as a member of the family Enterobacteriaceae, and assigned to the genus Citrobacter on the basis of morphological, metabolic and biochemical characteristics. Malonate was fermented under strictly anaerobic (sulphide-reduced) conditions to acetate and CO2 concomitant with growth. A maximum growth rate of 1.88 generations h-1 (mu = 1.30 h-1) was measured. The dry weight yield of cells from malonate was estimated at 2.5 g mol-1. Yeast extract was required for growth on malonate: other additives, or a vitamin solution, could not replace this requirement. Other dicarboxylic acids were not degraded in the absence or presence of malonate. Malonate was degraded under anaerobic, but not aerobic conditions. Malonate-decarboxylating activity was inducible by malonate under both anaerobic and aerobic conditions, and was not expressed in glucose- or citrate-grown anaerobic cultures. Monensin had no effect on malonate degradation, while 2,4-dinitrophenol decreased the rate of malonate degradation. This, with the lack of a sodium requirement for anaerobic growth on malonate, suggested that ATP generation may not be mediated by a sodium-pumping mechanism.  相似文献   

7.
Soluble proteins extracted from leaves of Chenopodium albumcatalyzed the conversion of pheophorbide a to a precursor ofpyropheophorbide a, putatively identified as C-132-carboxyl-pyropheophorbidea. The precursor was then decarboxylated non-enzymatically toyield pyropheophorbide a. Soluble proteins and pheophorbidea, as the substrate, were required for the formation of theprecursor, and boiled proteins were enzymatically inactive.The maximum rate of conversion of pheophorbide a to the precursoroccurred at pH 7.5. The Km for pheophorbide a was 12.5 µMat pH 7.0. Both pheophorbide b and bacteriopheophorbide a couldserve as substrates, but protopheophorbide a could not. Formationof methanol was detected during the enzymatic reaction, an indicationthat the enzyme is an esterase. Among seven alcohol analogstested, only methanol inhibited the enzymatic activity uncompetitively,with a K1 of 71.6 mM. Mass-spectrometric (MS) analysis of theprecursor yield a peak at m/z 579 that indicated the releaseof a methyl group from pheophorbide a. It appears thereforethat the enzyme catalyzes the demethylation of the carbomethoxygroup at C-132 of pheophorbide a by hydrolysis to yield methanoland the precursor, C-132-carboxyl-pyropheophorbide a, whichis converted to pyropheophorbide a by spontaneous decarboxylation.We have tentatively designated the enzyme "pheophorbidase".The presence of the enzyme was dependent on plant species andit was expressed constitutively. 1Present address: Faculty of Science, Shizuoka University, Ohya,Shizuoka, 422 Japan  相似文献   

8.
Investigation of the hemolytic phenotype under anaerobic growth conditions of an avian Pasteurella multocida strain, PBA100, resulted in the identification and characterisation of a gene encoding an esterase enzyme, mesA, that conferred a hemolytic phenotype in Escherichia coli under anaerobic conditions. MesA appeared to be expressed and functional under anaerobic and aerobic conditions in both E. coli and P. multocida. A P. multocida mesA mutant was generated which resulted in the loss of acetyl esterase activity under anaerobic conditions. However, this mutation did not cause any attenuation of virulence for mice nor a detectable change to the anaerobic hemolytic phenotype of P. multocida. In E. coli MesA appeared to cause hemolysis indirectly by the induction of the latent E. coli K-12 cytolysin, sheA.  相似文献   

9.
Chloroaromatic compounds are xenobiotics that cause great concern. The degradation of a model molecule, 3,4-dichlorobenzoate (3,4-DCB), was studied using three aerobic (AE)-anaerobic (AN) biofilm reactor systems: a coupled aerobic-anaerobic recycle biofilm reactor (CAR) system, an in-series anaerobic-aerobic biofilm reactor (SAR) system; and an independent aerobic and anaerobic biofilm reactor (IAR) system. In all three systems the inlet substrate concentration was 2.0 g/l and the dilution rates ranged from 0.045 to 0.142 per hour. The results show that the degradation efficiency of the CAR system (expressed as dechlorination and xenobiotic disappearance efficiencies, and biomass yield), was higher at all dilution rates tested than in both SAR and IAR systems. Moreover, dechlorination and xenobiotic disappearance efficiencies for resting suspended aerobic and anaerobic cells or mixed aerobic-anaerobic growing cells under anaerobic conditions were higher than under aerobic conditions. These results suggest that a “cooperative metabolism” between aerobic and anaerobic bacteria (caused by an exchange of cells and metabolites between AE and AN reactors) in the CAR system overcame the metabolic and kinetic limitations of aerobic and anaerobic bacteria in the AE and AN reactors of IAR and SAR systems. Therefore, the degradation efficiency of persistent and recalcitrant chloroaromatic xenobiotic compounds could be enhanced by using a CAR system. Received: 1 March 1999 / Received revision: 11 May 1999 / Accepted: 16 May 1999  相似文献   

10.
S E Davies  K M Brindle 《Biochemistry》1992,31(19):4729-4735
The influence of 6-phosphofructo-1-kinase on glycolytic flux in the yeast Saccharomyces cerevisiae was assessed by measuring the effects of enzyme overexpression on glucose consumption, ethanol production, and glycolytic intermediate levels under aerobic and anaerobic conditions. Enzyme overexpression had no effect on glycolytic flux under anaerobic conditions, but under aerobic conditions, it increased glycolytic flux up to the anaerobic level. The Pasteur effect was thus abolished in these cells. The increased glycolytic flux was accompanied by a compensatory decrease in flux in oxidative phosphorylation. The concentrations of the enzyme substrates showed only small or insignificant changes. These data imply that the enzyme has a low flux control coefficient for glycolysis. However, in cells overexpressing the enzyme, there was a compensatory decrease in 6-phosphofructo-2-kinase activity which was accompanied by a corresponding decrease in fructose 2,6-bisphosphate concentration. Measurements in vitro showed that the decrease in the concentration of this positive allosteric effector of 6-phosphofructo-1-kinase could significantly lower its specific activity in the cell and that this could compensate for the increased enzyme concentration in the overproducer.  相似文献   

11.
 The present work investigates 1-anthraquinone sulphonate (1-AS) biodegradation under (i) aerobic conditions using domestic activated sludge as inoculum, (ii) anaerobic conditions using sludge from an anaerobic domestic wastewater treatment digestor in a sulphate-containing or methanogenic environment, (iii) a combination of anaerobic followed by aerobic conditions. The process was evaluated in terms of primary degradation, i.e. 1-AS elimination and ultimate degradation, as total dissolved organic carbon removal. It was shown that aerobic conditions lead to the complete primary and ultimate degradation, of 1-AS. By contrast, neither under sulphato-reductive nor methanogenic conditions does anaerobic digestion lead to the significant degradation of 1-AS. The use of anaerobic treatment followed by aerobic treatment did not improve degradation. Indeed aerobic post-treatment resulted in the re-appearance of pollutant in the medium even though this had been partly degraded under anaerobic conditions. Received: 12 October 1995/Received revision: 18 December 1995/Accepted: 8 January 1996  相似文献   

12.
The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic / anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation.  相似文献   

13.
14.
15.
Essential tryptophan residues were specifically modified in soybean lipoxygenase-1 by N-bromosuccinimide (NBS). Both linoleate oxidation and pigment bleaching (β-carotene or chlorophyll a) activities were significantly reduced with the modified enzyme under aerobic conditions. However, the effect on the reduction of linoleate oxidation was more marked. Pigment bleaching under anaerobic conditions was almost completely blocked with the modified enzyme. On the basis of spectral studies it was elucidated that soybean lipoxygenase-1 contains two essential tryptophan residues in its active site.  相似文献   

16.
Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.  相似文献   

17.
The influence of growth conditions on assimilatory and respiratory nitrate reduction in Aerobacter aerogenes was studied. The level of nitrate reductase activity in cells, growing in minimal medium with nitrate as the sole nitrogen source, was much lower under aerobic than anaerobic conditions. Further, the enzyme of the aerobic cultures was very sensitive to sonic disintegration, as distinct from the enzyme of anaerobic cultures. When a culture of A. aerogenes was shifted from anaerobic growth in minimal medium with nitrate and NH(4) (+) to aerobiosis in the same medium, but without NH(4) (+), the production of nitrite stopped instantaneously and the total activity of nitrate reductase decreased sharply. Moreover, there was a lag in growth of about 3 hr after such a shift. After resumption of growth, the total enzymatic activity increased again slowly and simultaneously became gradually sensitive to sonic disintegration. These findings show that oxygen inactivates the anaerobic nitrate reductase and represses its further formation; only after a de novo synthesis of nitrate reductase with an assimilatory function will growth be resumed. The enzyme in aerobic cultures was not significantly inactivated by air, only by pure oxygen. The formation of the assimilatory enzyme complex was repressed, however, by NH(4) (+), under both aerobic and anaerobic conditions. The results indicate that the formation of the assimilatory enzyme complex and that of the respiratory enzyme complex are regulated differently. We suggest that both complexes have a different composition, but that the nitrate reductase in both cases is the same protein.  相似文献   

18.
The influence of pH on the denitrification activity of a continuous culture of Paracoccus denitrificans was studied in relation to the presence of nitrite. After a transition from aerobic to anaerobic conditions at the suboptimal pH of 6.8, P. denitrificans was not able to build up a functional denitrification pathway. Nitrite accumulated in the medium as the predominant denitrification product. Although the nitrite reductase gene was induced properly, the enzyme could not be detected at sufficient amounts in the culture. These observations indicate that either translation was somehow inhibited, or once synthesized nitrite reductase was inactivated, possibly by the high concentrations of nitrous acid (HNO2. Interestingly, when a P. denitrificans culture which was grown to steady-state under anaerobic conditions was then exposed to suboptimal pHs, cells exhibited a reduced overall denitrification activity, but neither nitrite nor any other denitrification intermediate accumulated.  相似文献   

19.
This study deals with effects of oxygen on the kinetics of P(700) photoinduced redox transitions and on induction transients of chlorophyll fluorescence in leaves of C(3) plants Hibiscus rosa-sinensis and Vicia faba. It is shown that the removal of oxygen from the leaf environment has a conspicuous effect on photosynthetic electron transport. Under anaerobic conditions, the concentration of oxidized P700 centers in continuous white light was substantially lower than under aerobic conditions. The deficiency of oxygen released non-photochemical quenching of chlorophyll fluorescence, thus indicating a decrease in the trans-thylakoid pH gradient (DeltapH). Quantitative analysis of experimental data within the framework of an original mathematical model has shown that the steady-state electron flux toward oxygen in Chinese hibiscus leaves makes up to approximately 40% of the total electron flow passing through photosystem 1 (PS1). The decrease in P700+ content under anaerobic conditions can be due to two causes: i) the retardation of electron outflow from PS1, and ii) the release of photosynthetic control (acceleration of electron flow from PS2 to P700+) owing to lower acidification of the intra-thylakoid space. At the same time, cyclic electron transport around PS1 was not stimulated in the oxygen-free medium, although such stimulation seemed likely in view of possible rearrangement of electron flows on the acceptor side of PS1. This conclusion stems from observations that the rates of P700+ reduction in DCMU-poisoned samples, both under aerobic and anaerobic conditions, were negligibly small compared to rates of electron flow from PS2 toward P700+ in untreated samples.  相似文献   

20.
New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号