首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic acids (or anions) and organic bases (or cations) are transported by the renal tubules of nonmammalian vertebrates, but until recently the details of the transport processes have been poorly studied. Work with isolated perfused and nonperfused renal tubules and with membrane vesicles has now begun to supply information on the transepithelial transport processes and the transport steps at the individual cell membranes. The current information is reviewed for organic acids (or anions) as a general group, for urate (which generally appears to be transported by a separate system from that for other organic anions), and for organic bases (or cations) as a general group. Tentative cellular models for the transepithelial transport of each of these general categories of compounds are suggested.  相似文献   

2.
El Khadem HS  Coxon B 《Carbohydrate research》2002,337(21-23):2161-2170
Cyclobutenedione phenylazo-phenylamines were found to exhibit bathochromic shifts in acidic media and hypsochromic shifts in basic media, like phenylazo-phenylhydrazones. The bathochromic shifts are due to the formation of resonance-stabilized cations and the hypsochromic shifts to enolization. The phenylazo-phenylamines and their cations and anions have been studied by NMR spectroscopy.  相似文献   

3.
To investigate the structural basis of anion selectivity of Drosophila GABA-gated Cl(-) channels, the permeation properties of wild-type and mutant channels were studied in Xenopus oocytes. This work focused on asparagine 319, which by homology is one amino acid away from a putative extracellular ring of charge that regulates cation permeation in nicotinic receptors. Mutation of this residue to aspartate reduced channel conductance, and mutation to lysine or arginine increased channel conductance. These results are consistent with an electrostatic interaction between this site and permeating anions. The lysine mutant, but not the arginine mutant, formed a channel that is permeable to cations, and this cannot be explained in terms of electrostatics. The lysine mutant had a 25-mV reversal potential in solutions with symmetrical Cl(-) and asymmetrical cations. The permeability ratio of K(+) to Cl(-) was determined as 0. 33 from reversal potential measurements in KCl gradients. Experiments with large organic cations and anions showed that cation permeation can only be seen in the presence of Cl(-), but Cl(-) permeation can be seen in the absence of permeant cations. Measurements of permeability ratios of organic anions indicated that the lysine mutant has an increased pore size. The cation permeability of the lysine-containing mutant channel cannot be accounted for by a simple electrostatic interaction with permeating ions. It is likely that lysine substitution causes a structural change that extends beyond this one residue to influence the positions of other channel-forming residues. Thus protein conformation plays an important role in enabling ion channels to distinguish between anions and cations.  相似文献   

4.
Design, synthesis, characterization, and ion detection studies of two ferrocene-appended Schiff bases namely N-(2-[ferrocenylamino]ethyl)-5-nitropyridin-2-amine ( 1 ) and ferrocenylamino-1H-imidazole-4-carboxamide ( 2 ) been reported. Both the chemosensors have been thoroughly characterized using Fourier transfer infrared, 1H and 13C nuclear magnetic resonance, high resolution mass spectrometry, and ultraviolet/visible (UV/visible) and fluorescence spectral techniques. Probes 1 and 2 were designed with the aim of appending the ferrocenyl group with pyridine ring having an amine substitution (for 1 ) and imidazole ring with an amide substitution (for 2 ). Interaction of these probes with a series of cations and anions was examined through UV/vis and fluorescence spectral techniques. Probe 2 exhibited an insignificant response towards anions and loss of selectivity for cations, whereas 1 displayed highly selective detection towards biologically important Fe3+ in 2:1 (probe:cation) stoichiometry. Notably, none of the cations and anions could interfere the selectivity of Fe3+ ensured by 1 in aqueous medium. The limit of detection for Fe3+ detection using 1 was determined to be 0.2 ppm. The results strongly suggest that 1 could find promising future application as a chemosensor for Fe3+ in biological systems for quantification and qualitative analysis.  相似文献   

5.
Thermal transition profiles were recorded for a variety of natural and synthetic DNA and double-stranded RNA preparations in the presence of tetramethylammonium (TMA+) and tetraethylammonium (TEA+) cations. Double-stranded RNAs of natural origin, with GC contents of 50% exhibited the same profiles and Tm values as native DNA containing normal bases. Hence the tetraalkylammonium cations liquidate not only the effects of base composition, and the difference in stability between A-T and A-U base pairs (further confirmed by measurements with uracil-containing DNA from phage PBS-2), but also that of the 2'OH. In the presence of TMA+ cations, there is very marked enhancement of the stability of U-U base pairs in poly(rU) and poly(Um). In 2.4 M TEA, the 1:1 complex of poly(G) with poly (C) formed readily and melted reversibly with a Tm as low as 87 degrees C. At concentrations of TMA and TEA for which dTm/dXGC = 0, the Tm values for various phage DNA preparations containing atypical bases (phages T2, T4, phi e, phi W-14, PBS-2) differ appreciably from those with 'normal bases'. Analysis of these findings indicates that the selective interaction of TMA and TEA cations with A-T base pairs occurs in the minor groove of the DNA helix. The overall results show that the action of these quaternary ammonium cations is not due exclusively to preferential binding to A-T base pairs, but must involve other factors, including modifications of solvent structure. They also underline the utility of TMA and TEA solvent systems for placing in evidence transition profiles not accessible in other solvent systems.  相似文献   

6.
The spectroscopic signatures of solvated anions and cations, in the O-H stretch region of water, are studied using the POLIR potential. Shifts in the spectra are shown to correlate very well with the distribution of a particular hydrogen bond angle for the waters in the first solvation shell. The results indicate that the spectral shifts might be predicted from MD simulations in a computationally convenient fashion, avoiding an explicit calculation of the spectra, as first suggested by Sharp et al. (J Chem Phys 114(4):1791–1796, 2001).  相似文献   

7.
We discovered that an Au(III)-DNA coordinate complex, Au(III)(DNA-base)2(amine)L, are formed by laser ablation of Au nanoparticles in an aqueous solution containing DNA molecules in the presence of amines and multi-valent cations, where L represents an unknown ligand (either amine or water). Optical absorption spectrum of the solution after laser ablation exhibited a 360 nm absorption peak assined to ligand-->Au(III) charge transfer (LMCT) band of the coordinate complex. The complex is considered to be formed as follows: (1) the DNA molecules are neutralized by binding the multi-valent cations to their negatively charged phosphate groups, and adsorbed on the surface of the Au nanoparticles by a hydrophobic interaction, (2) Au(III) ions are liberated from the Au nanoparticles by laser ablation, and (3) an Au(III) ion reacts with amine and two DNA bases of a DNA molecule into an Au(III)(DNA-base)2(amine)L.  相似文献   

8.
A cytolytic toxin produced by G. vaginalis was incorporated in artificial membranes and giant liposomes. The toxin formed ionic channels when incorporated in lipid bilayers. The electrical properties of such channels were studied. Current records revealed a unitary conductance of 126 pS (in symmetrical 150 mM KCl). The open state probability of the cytolysin formed channels was a function of the applied membrane potential. The permeability ratio of cations to anions was estimated to be 6.5.  相似文献   

9.
Summary Zero current potential and conductance of ionic channels formed by polyene antibiotic amphotericin B in a lipid bilayer were studied in various electrolyte solutions. Nonpermeant magnesium and sulphate ions were used to independently vary the concentration of monovalent anions and cations as well as to maintain the high ionic strength of the two solutions separated by the membrane. Under certain conditions the channels select very strongly for anions over cations. They are permeable to small inorganic anions. However, in the absence of these anions the channels are practically impermeable to any cation. In the presence of a permeant anion the contribution of monovalent cations to channel conductance grows with an increase in the anion concentration. The ratio of cation-to-anion permeability coefficients is independent of the membrane potential and cation concentration, but it does depend linearly on the sum of concentrations of a permeant anion in the two solutions. These results are accounted for on the assumption that a cation can enter only an anion-occupied channel to form an ionic pair at the center of the channel. The cation is also assumed to slip past the anion and then to leave the channel for the opposite solution. This model with only few parameters can quantitatively describe the concentration dependences of conductance and zero current potential under various conditions.  相似文献   

10.
The interaction of various lanthanide ions with vesicles of phosphatidylcholine from egg yolk has been followed by 31P NMR at 30 degrees C. From known magnetic properties of these ions, separation of the paramagnetic shift into a pure contact and a pseudo-contact part was carried out. Binding curves for the contact contribution (F curves) were obtained from vesicles in solutions of sodium salts with monovalent anions over a wide concentration range. These curves should be insensitive to any conformational effects due to ion binding. Indication of a conformational change in the lipid head group at low ion binding was obtained by studying the ratio between the contact and the pseudo-contact contributions. Besides the adsorption of lanthanide ions, specific anion binding to the surface was introduced to account for the enhanced chemical shifts (Cl- < Br- < NO3-). The results were analyzed in terms of the theory for the diffuse double layer (Gouy-Chapman-Grahame) with equilibrium conditions for the adsorbing cations and anions. Simulations of the titration curves furnished parameters for the ion-lipid interactions. The synergism between the cations and anions follows from the potential effects. Comparison of results with lanthanide ions and Ca2+ indicates that the anion adsorption probably depends on the nature of the adsorbed cation. Lanthanide ion binding to L-glycerophosphorylcholine is not influenced by sodium salts. The binding constant for this complex is weaker than with phosphatidylcholine. The chemical shifts for the lanthanide ion complexes with these two phosphorus compounds seem to be about the same.  相似文献   

11.
This study evaluated the ability of gamma-aminobutyric acid (GABA), baclofen, monovalent anions, divalent cations, and various combinations thereof to protect solubilized benzodiazepine (BZ) receptors of types 1 and 2, when contained together on the complex, against heat inactivation. Neither anions, cations, nor GABA alone provided significant protection of solubilized BZ receptors against heat, but inclusion of monovalent anions or divalent cations together with 500 microM GABA did afford protection. Monovalent anions combined with GABA (500 microM) provided 50% to full protection. Divalent cations, such as CaCl2 (2.5 mM) or MgCl2 (2.5 mM) in the presence of GABA (500 microM) yielded 45% and 24% protection, respectively. Other divalent cations tested (Zn2+, Hg2+, Co2+, and Ni2+) were poor protectors, even when combined with GABA. Monovalent anions (200 mM NaCl) and divalent cations (5 mM CaCl2) when tested together provided no protection. Similarly, baclofen (the GABA-B agonist) provided no protection, either alone or together with anions or divalent cations. These results indicate that the independent but interacting recognition sites of GABA, BZ, anions, and divalent cations, previously detected in the membrane-bound state, are retained in the solubilized state.  相似文献   

12.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg(2+), Ca(2+) and Ba(2+)) and anions (SO(4)(2-) and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   

13.
Kinetics for the acidic hydrolysis of several N6-substituted 2'-deoxyadenosines were studied in a wide pH-range. The proportions of the partial reactions proceeding via mono- and di-protonated substrates were estimated on the bases of the rate profiles obtained and the acidity constants determined spectrophotometrically for the monocations. The site of the initial protonation was established by the effects that trifluoroacetic acid exerted on the 15N NMR chemical shifts. The exceptional lability of the monocations of N6-acyl protected compounds is suggested to result from the preferred N7 protonation.  相似文献   

14.
Porin was isolated and purified from mitochondria of Paramecium tetraurelia. The protein showed a single band of apparent Mr 37,000 on sodium dodecyl sulfate polyacrylamide electrophoretograms. The reconstitution of the protein into artificial lipid bilayer membranes revealed it to be a porin giving pores with an average single-channel conductance of 0.26 nS in 0.1 M KCl. This conductance is about half of that of other eukaryotic porins studied to date. The pore formed by the mitochondrial porin of Paramecium was found to be voltage-dependent and switched to a defined substrate at membrane voltages larger than 20 mV. In the open state the pore exhibited the characteristics of a general diffusion pore because the mobility sequence of the ions inside the pore was similar to that in the bulk aqueous phase. The effective diameter was estimated to be about 1.3 nm. The properties of the low conductance state of the pore were studied in detail. In this state the pore favored the passage of cations, in contrast to the open state which favored anions slightly. The possible role of the low-conductance state in the regulation of transport processes across the outer mitochondrial membrane and in mitochondrial metabolism is discussed.  相似文献   

15.
We discovered that an Au(III)-DNA coordinate complex, Au(III)(DNA-base)2(amine)l, are formed by laser ablation of Au nanoparticles in an aqueous solution containing DNA molecules in the presence of amines and multi-valent cations, where l represents an unknown ligand (either amine or water). Optical absorption spectrum of the solution after laser ablation exhibited a 360 nm absorption peak assigned to ligand→Au(III) charge transfer (LMCT) band of the coordinate complex. The complex is considered to be formed as follows: 1) the DNA molecules are neutralized by binding the multi-valent cations to their negatively charged phosphate groups, and adsorbed on the surface of the Au nanoparticles by a hydrophobic interaction, 2) Au(III) ions are liberated from the Au nanoparticles by laser ablation, and 3) an Au(III) ion reacts with amine and two DNA bases of a DNA molecule into an Au(III)(DNA-base)2(amine)l.  相似文献   

16.
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.  相似文献   

17.
Phospholipid spherules (liposomes) as a model for biological membranes   总被引:11,自引:0,他引:11  
This review describes the properties of artificial spherules composed of phospholipids and various long-chain anions or cations. The lipids, which are in the liquid-crystal state, trap aqueous solutes such as cations, anions, glucose, or glycine in aqueous compartments between a series of lipid bilayers. The diffusion of these solutes from the spherules can be studied in the same way that diffusion across biological membranes is studied. The spherules exhibit many of the properties of natural membrane-bounded structures: they are capable of ion-discrimination, osmotic swelling, and response to a variety of physiologic and pharmacologic agents. These agents (steroids, drugs, toxins, antibiotics) accelerate or retard diffusion of ions or molecules from the spherules in a way that qualitatively mimics their action on erythrocytes, lysosomes, or mitochondria. Thus the spherules constitute a valuable model system with which to study the properties of biological membranes that may be dependent on their lipid components.  相似文献   

18.
1. The variations with pH (from 36n-sulphuric acid to 10n-sodium hydroxide) of the excitation and fluorescence wavelengths and fluorescence intensity of 2-, 3- and 4-hydroxypyridine and their O- and N-methyl derivatives were investigated. 2. 4-Hydroxy- and 4-methoxy-pyridine were non-fluorescent at all pH values. 3. The cations and dipolar ions of the 3-hydroxypyridine derivatives and the anion of 3-hydroxypyridine were fluorescent, but the neutral forms were not. 4. All the forms of the 2-hydroxypyridine derivatives were fluorescent. 5. Pyridoxol, pyridoxal and its 5-phosphate, pyridoxamine and pyridoxic acid and its lactone were studied similarly. All these compounds, except pyridoxal 5-phosphate, were more fluorescent than 3-hydroxypyridine. 6. The most fluorescent forms of these compounds are the anions, except for pyridoxol, where the dipolar ion was the most fluorescent form. The least fluorescent forms are the neutral molecules. The dipolar ions were appreciably fluorescent in all cases. 7. The most fluorescent form examined was the dianion of pyridoxic acid lactone. 8. The cations were all fluorescent except the cations of 2- and 3-methoxypyridine. All the cations showed excited-state ionization. The excited pK(a) values of these cations were determined and the results are discussed with reference to Weller's (1952) equation relating ground- and excited-state dissociation constants. 9. The pK(a) values for all ionizations undergone by the compounds examined were determined from fluorescence data. 10. Stokes shifts for the various ionic and neutral species of the compounds examined were calculated and are discussed.  相似文献   

19.
The effects of ethylene oxide and propylene oxide block copolymers (pluronics) on the permeability of several weak acids and bases through bilayer lipid membranes have been studied by the methods of monitoring (1) pH shifts near planar bilayers, (2) doxorubicin fluorescence quenching inside liposomes, and (3) current transients in the presence of hydrophobic anions. It has been shown that pluronics facilitate the permeation of comparatively large molecules (such as 2-n-undecylmalonic acid and doxorubicin) across lipid bilayers, while the permeation of small solutes (such as ammonium and acetic acid) remains unaffected. Pluronics also accelerate the translocation of large hydrophobic anions (tetraphenylborate). The effect of pluronics correlates with the content of propylene oxide units: it is enhanced when the portion of polypropylene oxide block in the copolymer is increased. The action of the pluronic on lipid membrane permeability differs from the effect of the conventional detergent Triton X-100, which does not affect doxorubicin transport if added at concentrations similar to those used for pluronics. It has been proposed that pluronics accelerate the processes of solute diffusion within lipid bilayers (in a structure-dependent manner) rather than influencing the rate of solute adsorption/desorption on the membrane surface. We suppose that the effect of pluronics on doxorubicin permeation across lipid bilayers along with the known effect on the multidrug resistance protein determines its influence on the therapeutic activity of anthracycline drugs.  相似文献   

20.
The effect of divalent cations on K and CI accumulation by slicesof beetroot tissue has been studied. It is shown that CI uptakefrom solutions of (K+Ca) CI can be greater than from KCI solutionsof the same CI concentration. It is considered that CI uptakelimits K uptake by beet cells, and that Ca acts to increasethe CI uptake. As a mechanism for this stimulation of CI uptake,it is suggested that uptake of the anion is limited by diffusionthrough a negatively charged surface or membrane, which willbe more permeable to anions when divalent cations, rather thanunivalent cations, are the counterions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号