首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
活细胞染色体切割(光刀)和光捕捉(光钳)的研究   总被引:1,自引:0,他引:1  
本文报道了光捕捉活细胞染色体的最新实验结果。对PTK_2有丝分裂细胞的染色体先围激光刀切割,再用光钳捕捉使该切割的染色体片断的行为发生改变。光捕捉中期切割的染色体片断有可能使它们整合到同一个子细胞中或丢失在分裂沟中。光捕捉后期切割的染色体可使该切割片断或掺入相反的细胞中或丢失在分裂沟中或回到原有的相应子细胞中。光捕捉操纵染色体去水螈肺上支子细胞中不仅同样有效,还可以在纺缍体的边缘,即纺缍体和间丝笼之间的细胞质清澈区域内用光钳操纵染色体片断移动,旋转。根据细胞和染色体形态和行为,对700-840nm波长范围内的各种波长的光捕捉进行了比较,结果表明,700nm或800-820nm波长操纵的细胞,出现最少的异常细胞百分率,760nm则诱发百分之百的异常细胞率。根据各方面的综合比较,700nm为最佳波长,共次为1060和800nm。760nm损伤细胞最严重,应避免使用。文中并讨论了光捕捉染色体的应用前景。  相似文献   

2.
本文综合报道了作者近数年来以PTK_2细胞为实验材料,用Nd:YAG激光器所发射的1.06微米波长和氩离子泵浦Titanium-Sapphire激光所发射的700—760毫微米波长的连续激光微光束作为光捕捉在显微操作染色体方面的一些主要实验结果。所得结果表明光捕捉可诱发中期细胞的落后染色体向中期板加速移动,抓住后期细胞的一对染色体,使其停留在中期板保持静止不动,而其余的染色体对照常进行染色单体的分离並移向两极,在后期一直用光捕捉抓住的那对染色单体,最终在胞质分裂时将进入一个子细胞,或丢失在分裂沟中或两染色单体分开,各自分别进入原相对的子细胞。作为光捕捉Titanium-Sapphire激光器发射的700—760毫微米波长的激光束,比Nd:YAG激光的1.06微米波长能在更高的输出能量水平下操作而产生较小的对细胞损伤的副作用,从而更容易操作染色体。在适宜的输出能量水平下操作,光捕捉不会对细胞造成损伤,受光捕捉的细胞一般都能继续分裂直至形成两个子细胞。实验结果证明光捕捉技术是一项研究活细胞纺锤体、染色体运动等细胞生物学问题而又不损伤细胞的良好工具。光捕捉技术也可能对诱发单体、三体细胞,研究细胞遗传提供新的手段。  相似文献   

3.
Abstract The use of the light-induced absorbance change at 820 nm (ΔA 820) to monitor the oxidation and reduction of P-700 in irradiated leaves is examined. Results obtained from leaves irradiated with a range of wavelengths of light, poisoned with DCMU, or lacking PS I, are consistent with the proposition that the light-induced ΔA 820 can be used to monitor P-700 oxidation in leaves.  相似文献   

4.
A study on clonal growth in Chinese hamster ovary (CHO) cells was conducted after exposure to optical trapping wavelengths using Nd:YAG (1064 nm) and tunable titanium-sapphire (700-990 nm) laser microbeam optical traps. The nuclei of cells were exposed to optical trapping forces at various wavelengths, power densities, and durations of exposure. Clonal growth generally decreased as the power density and the duration of laser exposure increased. A wavelength dependence of clonal growth was observed, with maximum clonability at 950-990 nm and least clonability at 740-760 nm and 900 nm. Moreover, the most commonly used trapping wavelength, 1064 nm from the Nd:YAG laser, strongly reduced clonability, depending upon the power density and exposure time. The present study demonstrates that a variety of optical parameters must be considered when applying optical traps to the study of biological problems, especially when survival and viability are important factors. The ability of the optical trap to alter either the structure or biochemistry of the process being probed with the trapping beam must be seriously considered when interpreting experimental results.  相似文献   

5.
Single anaphase chromosomes (in crane-fly spermatocytes) moved backwards after double irradiations with an ultraviolet light (UV) microbeam, first of the interzone and then of a kinetochore: the chromosome irradiated at the kinetochore moved backwards rapidly, across the equator and into the other half-spindle. High irradiation doses at the kinetochore were required to induce backward movement. Single irradiations of kinetochores or interzones were ineffective in inducing backward movements.  相似文献   

6.
Kitajima TS  Ohsugi M  Ellenberg J 《Cell》2011,146(4):568-581
Chromosomes must establish stable biorientation prior to anaphase to achieve faithful segregation during cell division. The detailed process by which chromosomes are bioriented and how biorientation is coordinated with spindle assembly and chromosome congression remain unclear. Here, we provide complete 3D kinetochore-tracking datasets throughout cell division by high-resolution imaging of meiosis I in live mouse oocytes. We show that in acentrosomal oocytes, chromosome congression forms an intermediate chromosome configuration, the prometaphase belt, which precedes biorientation. Chromosomes then invade the elongating spindle center to form the metaphase plate and start biorienting. Close to 90% of all chromosomes undergo one or more rounds of error correction of their kinetochore-microtubule attachments before achieving correct biorientation. This process depends on Aurora kinase activity. Our analysis reveals the error-prone nature of homologous chromosome biorientation, providing a possible explanation for the high incidence of aneuploid eggs observed in mammals, including humans.  相似文献   

7.
Slit-scan flow cytometry (SSFCM) was used to quantify the frequency of dicentric chromosomes in human lymphoblastoid cells following gamma irradiation. In this study, cultured human cells were irradiated with 0, 0.25, 0.5, 1.0, and 2.0 Gy of 0.66 MeV gamma-rays, cultured for an additional 11 h, and treated for 5 h with colcemid. Chromosomes were then isolated, stained with propidium iodide, and analyzed using SSFCM for total fluorescence and slit-scan profile. The frequency of chromosomes having DNA contents greater than once and less than twice the DNA content of the number 1 chromosome and producing trimodal profiles was determined at each dose. This frequency was used as an estimate of the relative dicentric chromosome frequency at that dose. The estimated dicentric chromosome frequency per cell, f(D), increased with dose, D, in a linear-quadratic manner according to the relation f(D) = 4.52 x 10(-5) + 5.72 x 10(-5) D + 1.19 x 10(-4) D2.  相似文献   

8.
To study the potential use of optical forces to manipulate chromosome movement, we have used a Nd:YAG laser at a wavelength of 1.06 microns focused into a phase contrast microscope. Metaphase and anaphase chromosomes were exposed while being monitored by video microscopy. The results indicated that when optical forces were applied to late-moving metaphase chromosomes on the side closest to the nearest spindle pole, the trapped chromosomes initiated movement to the metaphase plate. The chromosome velocities were two to eight times the normal rate depending on the chromosome size, geometry, and trapping site. At the initiation of anaphase, a pair of chromatids could be held by the optical trap and kept motionless throughout anaphase while the other pairs of chromatids separated and moved to opposite spindle poles. As a result, the trapped chromosome either was incorporated into one of the daughter cells or was lost in the cleavage furrow, or the two chromatids eventually separated and moved to their respective daughter cells. If the trap was removed at the beginning of anaphase B, the chromosome moved back to the poles. Our experiments demonstrate that the laser-induced optical force trap is a potential new technique to study noninvasively the mitotic spindle of living cells.  相似文献   

9.
During mitosis in Ptk1 cells anaphase is not initiated until, on average, 23 +/- 1 min after the last monooriented chromosome acquires a bipolar attachment to the spindle--an event that may require 3 h (Rieder, C. L., A. Schultz, R. W. Cole, and G. Sluder. 1994. J. Cell Biol. 127:1301-1310). To determine the nature of this cell-cycle checkpoint signal, and its site of production, we followed PtK1 cells by video microscopy prior to and after destroying specific chromosomal regions by laser irradiation. The checkpoint was relieved, and cells entered anaphase, 17 +/- 1 min after the centromere (and both of its associated sister kinetochores) was destroyed on the last monooriented chromosome. Thus, the checkpoint mechanism monitors an inhibitor of anaphase produced in the centromere of monooriented chromosomes. Next, in the presence of one monooriented chromosome, we destroyed one kinetochore on a bioriented chromosome to create a second monooriented chromosome lacking an unattached kinetochore. Under this condition anaphase began in the presence of the experimentally created monooriented chromosome 24 +/- 1.5 min after the nonirradiated monooriented chromosome bioriented. This result reveals that the checkpoint signal is not generated by the attached kinetochore of a monooriented chromosome or throughout the centromere volume. Finally, we selectively destroyed the unattached kinetochore on the last monooriented chromosome. Under this condition cells entered anaphase 20 +/- 2.5 min after the operation, without congressing the irradiated chromosome. Correlative light microscopy/elctron microscopy of these cells in anaphase confirmed the absence of a kinetochore on the unattached chromatid. Together, our data reveal that molecules in or near the unattached kinetochore of a monooriented PtK1 chromosome inhibit the metaphase-anaphase transition.  相似文献   

10.
Details of mitosis in the chloromonadophycean alga Vacuolaria virescens Cienk. have been studied with the light microscope. The chromosomes are relatively large (up to μ in length at metaphase) and so mitotic stages are readily distinguishable. Chromosomes can be recognized in interphase nuclei as fine strands of chromatin. Contraction of these chromosomes marks the beginning of mitosis and continues progressively until the transition from metaphase to anaphase. Disintegration of nucleoli is complete by late prophase and nucleolar reformation begins in telophase. Some chromosomes exhibit less densely stained regions; centromeres are also present as indicated by their differential staining and by the behavior of chromosomes at metaphase and anaphase. At anaphase progeny chromosomes move apart parallel to the division axis of the nucleus. As anaphase progresses the chromosomes fuse at the polar surface of the progeny chromosome groups. This process continues in telophase and the chromosome groups become more spherical. By the end of telophase nucleolar reformation has begun and the chromosomes have relaxed to their interphase condition.  相似文献   

11.
Segregation of chromosomes at the time of cell division is achieved by the microtubules and associated molecules of the spindle. Chromosomes attach to kinetochore microtubules (kMTs), which extend from the spindle pole region to kinetochores assembled upon centromeric DNA. In most animal cells studied, chromosome segregation occurs as a result of kMT shortening, which causes chromosomes to move toward the spindle poles (anaphase A). Anaphase A is typically followed by a spindle elongation that further separates the chromosomes (anaphase B). The experiments presented here provide the first detailed analysis of anaphase in a live vertebrate oocyte and show that chromosome segregation is initially driven by a significant spindle elongation (anaphase B), which is followed by a shortening of kMTs to fully segregate the chromosomes (anaphase A). Loss of tension across kMTs at anaphase onset produces a force imbalance, allowing the bipolar motor kinesin-5 to drive early anaphase B spindle elongation and chromosome segregation. Early anaphase B spindle elongation determines the extent of chromosome segregation and the size of the resulting cells. The vertebrate egg therefore employs a novel mode of anaphase wherein spindle elongation caused by loss of k-fiber tension is harnessed to kick-start chromosome segregation prior to anaphase A.  相似文献   

12.
This work deals with the role of myosin phosphorylation in anaphase chromosome movement. Y27632 and ML7 block two different pathways for phosphorylation of the myosin regulatory light chain (MRLC). Both stopped or slowed chromosome movement when added to anaphase crane-fly spermatocytes. To confirm that the effects of the pharmacological agents were on the presumed targets, we studied cells stained with antibodies against mono- or bi-phosphorylated myosin. For all chromosomes whose movements were affected by a drug, the corresponding spindle fibres of the affected chromosomes had reduced levels of 1P- and 2P-myosin. Thus the drugs acted on the presumed target and myosin phosphorylation is involved in anaphase force production.Calyculin A, an inhibitor of MRLC dephosphorylation, reversed and accelerated the altered movements caused by Y27632 and ML-7, suggesting that another phosphorylation pathway is involved in phosphorylation of spindle myosin. Staurosporine, a more general phosphorylation inhibitor, also reduced the levels of MRLC phosphorylation and caused anaphase chromosomes to stop or slow. The effects of staurosporine on chromosome movements were not reversed by Calyculin A, confirming that another phosphorylation pathway is involved in phosphorylation of spindle myosin.  相似文献   

13.
We have examined the rates of chromosome and pole motion during anaphase in HeLa cells using differential interference contrast and polarization optics. In early anaphase both chromosomes and poles move apart. When the chromosomes are separated by a distance about equal to the metaphase spindle length, both chromosomes and poles slow but continue to move at a reduced rate. Throughout anaphase, the chromosomes move faster than the poles, so the chromosome-to-pole distance decreases. Treatment of the cells with about 5 × 10?8 M colchicine up to 45 min before observation tends to block normal formation of metaphase spindles, but more than half of the cells in metaphase go on through anaphase. In these cells, both chromosome and pole motions are essentially normal until the chromosomes are separated by a distance equal to the length of the metaphase spindle. After that time, chromosome motion is supressed and the poles move slowly toward one another. These data suggest that the mechanism of anaphase motion changes character when the chromosomes become spaced by the metaphase spindle length. We call anaphase before and after that time phase 1 and phase 2, respectively. The results are discussed in the light of a sliding tubule model for chromosome motion.  相似文献   

14.
Irradiation of the mitotic (prophase and prometaphase) tissue culture PK (pig kidney embryo) cells using mercury arc lamp and band-pass filters postponed or inhibited anaphase onset. The biological responses observed after irradiation were: (i) normal cell division, (ii) delay in metaphase and then normal anaphase and incomplete cytokinesis, (iii) exit into interphase without separation of chromosomes, (iv) complete mitotic blockage. Cell sensitivity to the light at wavelengths from 423 and 488 nm was nearly the same; to the near UV light (wavelength 360 nm) it was 5–10 times more; to the green light (wavelength >500 nm) it was at least 10 times less. To elucidate the possible mechanism of the action of blue light we measured cell adsorption and examined cell autofluorescence. Autofluorescence of cytoplasmic granules was exited at wavelengths of 450–490 nm, but not at >500 nm. In mitotic cells fluorescent granules accumulated around the spindle. We suppose blue light irradiation induces formation of the free radicals and/or peroxide, and thus perturb the checkpoint system responsible for anaphase onset.  相似文献   

15.
Irradiation of the kinetochore region of PtK2 chromosomes by laser light of 532 nm was used to study the function of the kinetochore region in chromosome movement and to create an artificial micronuclei in cells. When the sister kinetochores of a chromosome were irradiated at prometaphase, the affected chromosome detached from the spindle and exhibited no further directed movements for the duration of mitosis. The chromatids of the chromosome remained attached to one another until anaphase, at which point they separated. No poleward movement of the chromatids was observed, and at telophase they passively moved to one of the daughter cells and were enclosed in a micronucleus. The daughter cell containing the micronucleus was then isolated by micromanipulation and followed through subsequent mitoses. At the next mitosis, two chromosomes, each with two chromatids, condensed in the micronucleus. These chromosomes did not attach to the spindle and showed chromatid separation, but no poleward movements at anaphase. They were again enclosed in micronuclei at telophase. The third generation mitosis was similar to the second. Occasionally, both the irradiation-produced and naturally occurring micronuclei exhibited no chromosome condensation at mitosis. Feulgen-stained monolayers of PtK2 cells with naturally occurring micronuclei showed that some micronuclei stain positive for DNA and others do not. This finding raises questions about the fate of chromosomes in a micronucleus.  相似文献   

16.
Funabiki H  Murray AW 《Cell》2000,102(4):411-424
At anaphase, the linkage betweeh sister chromatids is dissolved and the separated sisters move toward opposite poles of the spindle. We developed a method to purify metaphase and anaphase chromosomes from frog egg extracts and identified proteins that leave chromosomes at anaphase using a new form of expression screening. This approach identified Xkid, a Xenopus homolog of human Kid (kinesin-like DNA binding protein) as a protein that is degraded in anaphase by ubiquitin-mediated proteolysis. Immunodepleting Xkid from egg extracts prevented normal chromosome alignment on the metaphase spindle. Adding a mild excess of wild-type or nondegradable Xkid to egg extracts prevented the separated chromosomes from moving toward the poles. We propose that Xkid provides the metaphase force that pushes chromosome arms toward the equator of the spindle and that its destruction is needed for anaphase chromosome movement.  相似文献   

17.
Optical tweezers have emerged as a powerful technique for micromanipulation of living cells. Although the technique often has been claimed to be nonintrusive, evidence has appeared that this is not always the case. This work presents evidence that near-infrared continuous-wave laser light from optical tweezers can produce stress in Caenorhabditis elegans. A transgenic strain of C. elegans, carrying an integrated heat-shock-responsive reporter gene, has been exposed to laser light under a variety of illumination conditions. It was found that gene expression was most often induced by light of 760 nm, and least by 810 nm. The stress response increased with laser power and irradiation time. At 810 nm, significant gene expression could be observed at 360 mW of illumination, which is more than one order of magnitude above that normally used in optical tweezers. In the 700-760-nm range, the results show that the stress response is caused by photochemical processes, whereas at 810 nm, it mainly has a photothermal origin. These results give further evidence that the 700-760-nm wavelength region is unsuitable for optical tweezers and suggest that work at 810 nm at normal laser powers does not cause stress at the cellular level.  相似文献   

18.
Irradiation of the kinetochore region of PtK2 chromosomes by laser light of 532 nm was used to study the function of the kinetochore region in chromosome movement and to create artificial micronuclei in cells. When the sister kinetochores of a chromosome were irradiated at prometaphase, the affected chromosome detached from the spindle and exhibited no further directed movements for the duration of mitosis. The chromatids of the chromosome remained attached to one another until anaphase, at which point they separated. No poleward movement of the chromatids was observed, and at telophase they passively moved to one of the daughter cells and were enclosed in a micronucleus. The daughter cell containing the micronucleus was then isolated by micromanipulation and followed through subsequent mitoses. At the next mitosis, two chromosomes, each with two chromatids, condensed in the micronucleus. These chromosomes did not attach to the spindle and showed chromatid separation, but no poleward movements at anaphase. They were again enclosed in micronuclei at telophase. The third generation mitosis was similar to the second. Occasionally, both the irradiation-produced and naturally occurring micronuclei exhibited no chromosome condensation at mitosis. Feulgenstained monolayers of PtK2 cells with naturally occurring micronuclei showed that some micronuclei stain positive for DNA and others do not. This finding raises questions about the fate of chromosomes in a micronucleus.  相似文献   

19.
In meiosis I, two chromatids move to each spindle pole. Then, in meiosis II, the two are distributed, one to each future gamete. This requires that meiosis I chromosomes attach to the spindle differently than meiosis II chromosomes and that they regulate chromosome cohesion differently. We investigated whether the information that dictates the division type of the chromosome comes from the whole cell, the spindle, or the chromosome itself. Also, we determined when chromosomes can switch from meiosis I behavior to meiosis II behavior. We used a micromanipulation needle to fuse grasshopper spermatocytes in meiosis I to spermatocytes in meiosis II, and to move chromosomes from one spindle to the other. Chromosomes placed on spindles of a different meiotic division always behaved as they would have on their native spindle; e.g., a meiosis I chromosome attached to a meiosis II spindle in its normal fashion and sister chromatids moved together to the same spindle pole. We also showed that meiosis I chromosomes become competent meiosis II chromosomes in anaphase of meiosis I, but not before. The patterns for attachment to the spindle and regulation of cohesion are built into the chromosome itself. These results suggest that regulation of chromosome cohesion may be linked to differences in the arrangement of kinetochores in the two meiotic divisions.  相似文献   

20.
Pancentromeric FISH and X-chromosome painting were used to characterize anaphase aberrations in 2,048 cultured lymphocytes from a healthy 62-year-old woman. Of 163 aberrant anaphases, 66.9% contained either chromosomes or their fragments that lagged behind. Characterization of 200 laggards showed that 49% were autosomes, 33. 5% were autosomal fragments, and 17.5% were X chromosomes. The X chromosome represented one-fourth of all lagging chromosomes and was involved much more often than would be expected by chance (1/23). Labeling of the late-replicating inactive X chromosome with 5-bromo-2'-deoxyuridine revealed that both X homologues contributed equally to the laggards. Among 200 micronuclei examined from interphase cells, the proportion of the X chromosome (31%) and autosomal fragments (50%) was higher than among anaphase laggards, whereas autosomes were involved less often (19%). These findings may reflect either selection or the fact that lagging autosomes, which were more proximal to the poles than were lagging X chromosomes, were more frequently included within the main nucleus. Our results suggest that the well-known high micronucleation and loss of the X chromosome in women's lymphocytes is the result of frequent distal lagging behind in anaphase and effective micronucleation of this chromosome. This lagging appears to affect the inactive and active X chromosomes equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号