首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies have shown that microRNA-383 (miR-383) expression is downregulated in the testes of infertile men with maturation arrest (MA). However, the underlying mechanisms of miR-383 involved in the pathogenesis of MA remain unknown. In this study, we showed that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA. Overexpression of miR-383 in NT2 (testicular embryonal carcinoma) cells resulted in suppression of proliferation, G1-phase arrest and induction of apoptosis, whereas silencing of miR-383 reversed these effects. The effects of miR-383 were mediated through targeting a tumor suppressor, interferon regulatory factor-1 (IRF1), and miR-383 was negatively correlated with IRF1 protein expression in vivo. miR-383 inhibited IRF1 by affecting its mRNA stability, which subsequently reduced the levels of the targets of IRF1, namely cyclin D1, CDK2 and p21. Downregulation of IRF1 or cyclin D1, but not that of CDK2, enhanced miR-383-mediated effects, whereas silencing of p21 partially inhibited the effects of miR-383. Moreover, miR-383 downregulated CDK4 by increasing proteasome-dependent degradation of CDK4, which in turn resulted in an inhibition of phosphorylated retinoblastoma protein (pRb) phosphorylation. These results suggest that miR-383 functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway. Abnormal testicular miR-383 expression may potentiate the connections between male infertility and testicular germ cell tumor.  相似文献   

2.
3.
Male sterility results from a number of characterized exogeneous or genetic dysfunctions preventing normal differentiation into mobile spermatozoa. This may now be overcome by intra cytoplasmic sperm injection (ICSI). This practice does not require mobile, or even mature spermatozoa for in vitro fecondation. However, a functional respiratory chain, partly encoded by the mitochondrial DNA (mtDNA), is required for the mobility of the spermatozoa. We report the case of an infertile patient who wished to procreate. ICSI was proposed but he displayed multiple mtDNA deletions of possible nuclear origin in the spermatozoa and in the deltoid muscle. Even though mtDNA is maternally inherited, the possibility of a nuclear-driven mutation affecting the integrity of the mtDNA should be taken into account when ICSI is to be performed. Together with recent genetic in vitro manipulations in mammals, our data point to the importance of studying the mtDNA structure in human spermatozoa, and the potential risks of these non-natural practices for procreation.  相似文献   

4.
In a previous study on the effects of gestational and lactational exposure of para-nonylphenol on male rats, we noted in both induced and uninduced rats, that variations in cleaved caspase-3 immunostaining patterns were associated with distinct nuclear alterations in mainly basally located germ cells (spermatogonia and preleptotene spermatocytes). These were re-analysed and compared with cleaved caspase-3-labeled germ cells in the aging human and the spermatogenically active catfish testis. In the rat testes, cytoplasmic immunostaining was progressively associated with lateral compression of the nucleus, its break up into large pieces which can contain immunostained marginated chromatin masses. The pale remnants of the nucleus continued to shrink in size concomitant with the appearance of blue-purplish stained regions in the cytoplasm similar in color to the condensed chromatin in spermatids, a condition which was TUNEL-negative. These large clumps of chromatin also eventually disappeared, giving rise to cells resembling cytoplasmic ghosts, a condition which was TUNEL-positive. By contrast, the immunolabeled nuclei of human and catfish germ cells condensed into a single mass, after which they lost immunoreactivity. To exclude the possibility that these observations could reflect alterations in Sertoli nuclei, rat testicular sections were probed with a mouse anti-human GATA-4 monoclonal (MHM) antibody. The MHM was, however, the second of two GATA-4 antibodies tested, with a goat anti-mouse polyclonal (GMP) initially used to label the rat Sertoli nuclei. GMP unexpectedly, but distinctly labeled the complete development of the acrosome in the rat testis, a fortuitous finding with utility for staging of the seminiferous epithelium.  相似文献   

5.
Globozoospermia is a rare (incidence <0.1% in male infertile patients) form of teratozoospermia, mainly characterized by round-headed spermatozoa that lack an acrosome. It originates from a disturbed spermiogenesis, which is expected to be induced by a genetic factor. Several family cases and recessive mouse models with the same phenotype support this expectation. In this study, we present a consanguineous family with three affected brothers, in whom we have identified a homozygous mutation in the spermatogenesis-specific gene SPATA16. This is the first example of a nonsyndromic male infertility condition in humans caused by an autosomal gene defect, and it could also mean that the identification of other partners like SPATA16 could elucidate acrosome formation.  相似文献   

6.
7.
Male germ cell specification and differentiation   总被引:8,自引:0,他引:8  
Understanding the mechanisms by which the germline is induced and maintained should lead to a broader understanding of the means by which pluripotency is acquired and maintained. In this review, two major aspects of male germ cell development are discussed: underlying mechanisms for induction and maintenance of primordial germ cells and the basic signaling pathways that determine spermatogonial cell fate.  相似文献   

8.
9.
The Drosophila Trithorax‐like (Trl) gene encodes a GAGA factor which regulates a number of developmentally important genes. In this study, we identify a new function for Drosophila GAGA factor in male germ cell development. Trl mutants carrying strong hypomorphic alleles display loss of primordial germ cells during their migration in embryogenesis and severe disruption in mitochondria structure during early spermatogenesis. The mutation resulted in small testes formation, a deficit of germ cells, abnormal mitochondrial morphogenesis, spermatocyte death through autophagy, and partial or complete male sterility. Pleiotropic mutation effects can be explained by the misexpression of GAGA factor target genes, the products of which are required for germ cell progression into mature sperm. genesis 52:738–751, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
11.
The spermatogenic and oogenic lineages originate from bipotential primordial germ cells in response to signalling in the foetal testis or ovary, respectively. The signals required for male germ cell commitment and their entry into mitotic arrest remain largely unknown. Recent data show that the ligand GDNF is up regulated in the foetal testis indicating that it may be involved in male germ cell development. In this study genetic analysis of GDNF-RET signalling shows that RET is required for germ cell survival. Affected germ cells in Ret-/- mice lose expression of key germ cell markers, abnormally express cell cycle markers and undergo apoptosis. Surprisingly, a similar phenotype was not detected in Gdnf-/- mice indicating that either redundancy with a Gdnf related gene might compensate for its loss, or that RET operates in a GDNF independent manner in mouse foetal germ cells. Either way, this study identifies the proto-oncogene RET as a novel component of the foetal male germ cell development pathway.  相似文献   

12.
Chromosomal anomalies may be a reason for both male and female infertility. The aim of this study was to investigate the contribution of chromosomal abnormalities in sterile couples from Kuwait. A total of 118 patients with clinical diagnosis of infertility was analyzed using cytogenetic banding techniques. Common chromosomal abnormalities were detected in 12 patients. We describe here one new case of an infertile male with the karyotype 46,XY, del(21)(pter;q11.2). The overall incidence of 11% abnormality indicates that routine chromosome analysis of infertile couples in Kuwait should be considered before the planning of intracytoplasmic sperm injection.  相似文献   

13.
Peroxisomal testis-specific 1 gene (Pxt1) is the only male germ cell-specific gene that encodes a peroxisomal protein known to date. To elucidate the role of Pxt1 in spermatogenesis, we generated transgenic mice expressing a c-MYC-PXT1 fusion protein under the control of the PGK2 promoter. Overexpression of Pxt1 resulted in induction of male germ cells' apoptosis mainly in primary spermatocytes, finally leading to male infertility. This prompted us to analyze the proapoptotic character of mouse PXT1, which harbors a BH3-like domain in the N-terminal part. In different cell lines, the overexpression of PXT1 also resulted in a dramatic increase of apoptosis, whereas the deletion of the BH3-like domain significantly reduced cell death events, thereby confirming that the domain is functional and essential for the proapoptotic activity of PXT1. Moreover, we demonstrated that PXT1 interacts with apoptosis regulator BAT3, which, if overexpressed, can protect cells from the PXT1-induced apoptosis. The PXT1-BAT3 association leads to PXT1 relocation from the cytoplasm to the nucleus. In summary, we demonstrated that PXT1 induces apoptosis via the BH3-like domain and that this process is inhibited by BAT3.  相似文献   

14.
《Biomarkers》2013,18(3):217-220
Previous studies have revealed that genetic factors may be involved in regulating folate turnover, e.g. methylenetetrahydrofolate reductase polymorphism in the development of male infertility. Folate transporter, encoded by the SLC19A1 gene, commonly referred to as reduced folate carrier (RFC) is a transmembrane protein, which transfers hydrophilic folates across the cell membrane. It was hypothesized that common polymorphism within the SLC19A1 gene (rs1051266:G>A, 80G>A) may alter RFC function. The aim of this study was to investigate a potential association between the SLC19A1 80G>A polymorphism and male infertility in a case–control study. The SLC19A1 80G>A polymorphism was determined by means of a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) assay in 213 infertile Caucasian men and 226 ethnically matched controls. The distribution of SLC19A1 genotypes in the infertile men was as follows: GG 26.8%, GA 51.2%, AA 22.1% and in fertile men: GG 24.8%, GA 50.4%, AA 24.8%, and was comparable in the both the evaluated groups. Odds ratios (95% confidence interval, CI): 0.90 (0.59–1.38) and 0.88 (0.56–1.36) for dominant and recessive models remained non-significant, also after adjustment for age: 0.89 (0.57–1.37) and 0.80 (0.51–1.25), respectively. Our study demonstrated that polymorphism 80G>A of the SLC19A1 gene is not associated with male infertility.  相似文献   

15.
Wu W  Shen O  Qin Y  Niu X  Lu C  Xia Y  Song L  Wang S  Wang X 《PloS one》2010,5(11):e13884

Background

Abnormal germline DNA methylation in males has been proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. Previous studies have been focused on imprinted genes with DNA methylation in poor quality human sperms. However, recent but limited data have revealed that sperm methylation abnormalities may involve large numbers of genes or shown that genes that are not imprinted are also affected.

Methodology/Principal Findings

Using the methylation-specific polymerase chain reaction and bisulfite sequencing method, we examined methylation patterns of the promoter of methylenetetrahydrofolate reductase (MTHFR) gene (NG_013351: 1538–1719) in sperm DNA obtained from 94 idiopathic infertile men and 54 normal fertile controls. Subjects with idiopathic infertility were further divided into groups of normozoospermia and oligozoospermia. Overall, 45% (41/94) of idiopathic infertile males had MTHFR hypermethylation (both hemimethylation and full methylation), compared with 15% of fertile controls (P<0.05). Subjects with higher methylation level of MTHFR were more likely to have idiopathic male infertility (P-value for trend  = 0.0007). Comparing the two groups of idiopathic infertile subjects with different sperm concentrations, a higher methylation pattern was found in the group with oligozoospermia.

Conclusions

Hypermethylation of the promoter of MTHFR gene in sperms is associated with idiopathic male infertility. The functional relevance of hypermathylation of MTHFR to male fertility warrants further investigation.  相似文献   

16.
Membranes of Mycoplasma species take up 2–4 times more exogenous cholesterol than membranes of Acholeplasma species. To test whether the lower cholesterol uptake capacity of Acholeplasma is due to the high glycolipid content of their membranes, the phospholipids of Acholeplasma laidlawii and Mycoplasma capricolum membranes were hydrolyzed by phospholipase A2. Digestion removed about 30% of the polar lipids of A. laidlawii, leaving the glycolipids and phospholglycolipids intact, and about 70% of the polar lipids of M. capricolum, the residue consisting mostly of sphingomyelin. Cholesterol uptake by the treated membranes from phosphatidylcholine/cholesterol vesicles decreased in rough proportion to the amount of polar lipid removed, indicating that the glycolipids in A. laidlawii membranes can participate in cholesterol uptake.Trypsin digestion of growing cells and isolated membranes of M. capricolum decreased cholesterol uptake by about one-half. Similar treatment of A. laidlawii cells and membranes had no effect on cholesterol uptake. These findings suggest the existence of protease-sensitive receptors on the cell surface of M. capricolum responsible for tighter contact with the cholesterol/phosphatidylcholine vesicles. It is proposed that the ability of Mycoplasma species to take up large quantities of exogenous cholesterol and phospholipids depends on the presence of protein receptors for cholesterol donors, receptors which are absent in Acholeplasma species.  相似文献   

17.
Generative and sperm cells were examined at four stages of development from generative cell formation to sperm cell maturation using serial transmission electron microscopy. The generative cell and vegetative nucleus are associated in a male germ unit association during pollen maturation and tube elongation, except for generative cell mitosis. At late stages of prophase, this association loosens; the generative cell separates from the vegetative nucleus at metaphase. Slender, unbranched, or occasionally branched projections may be found at one or both ends of the generative cell, or they may be single, blunt, and short. Slender projections are rare during anaphase and telophase. The vegetative nucleus moves back into apposition with one sperm cell at the end of mitosis. During the re-establishment of the association, the vegetative nucleus first touches the end of the leading sperm cell and then moves next to the middle of the sperm nucleus. As the sperm cells enter interphase, a conventional association is re-established between one cell and the vegetative nucleus through one or more long and slender cytoplasmic extensions; these associations are maintained throughout later passage in the pollen tube. During maturation, a significant increase occurs in the surface area of the sperm cells (particularly in the sperm cell in association with the vegetative nucleus), and a lesser increase in nuclear volume and surface area. Other sperm cell parameters, including those of heritable organelles, remain unchanged during sperm cell maturation.  相似文献   

18.

Background

Few risk factors have been established for childhood germ cell tumors (GCT). Parental infertility and infertility treatment may be associated with GCT development but these risk factors have not been fully investigated.

Methods

A case–control study of childhood GCT was conducted through the Children's Oncology Group (COG). Cases, under the age of 15 years at diagnosis, were recruited through COG institutions from January 1993 to December 2002. Controls were obtained through random digit dialing. Information about infertility and infertility treatment along with demographic factors was collection through maternal interviews. Subgroups created by gender, age at diagnosis, and tumor location were examined separately. Statistical analysis was performed using multivariate logistic regression models.

Results

Overall, no association between GCT and infertility or its treatment was found. In subgroup analysis, females whose mothers had two or more fetal losses were found to be at increased risk for non-gonadal tumors (Odds ratio (OR) = 3.32, 95% Confidence interval (CI) = 1.12–9.88). Younger maternal age was associated with a lower risk of gonadal GCT in females (OR = 0.52, 95% CI = 0.28–0.96). There was an increased risk of all GCT and gonadal GCT in males born to older mothers (OR = 2.88, 95% CI = 1.13–7.37 and OR = 3.70, 95% CI = 1.12–12.24).

Conclusion

While no association between parental infertility or its treatment and childhood GCT was found overall, possible associations with maternal age and history of recurrent fetal loss were found in subgroups defined by gender.  相似文献   

19.
20.
Male germ cells are susceptible to radiation-induced injury, and infertility is a common problem after total-body irradiation. Here we investigated, first, the effects of irradiation on germ cells in mouse testis and, second, the role of sphingosine-1-phosphate (S1P) treatment in radiation-induced male germ cell loss. Irradiation of mouse testes mainly damaged the early developmental stages of spermatogonia. The damage was seen by means of DNA flow cytometry 21 days after irradiation as decreasing numbers of spermatocytes and spermatids with increasing amounts of ionizing radiation (0.1-2.0 Gy). Intratesticular injections of S1P given 1-2 h before irradiation (0.5 Gy) did not protect against short-term germ cell loss as measured by in situ end labeling of DNA fragmentation 16 h after irradiation. However, after 21 days, in the S1P-treated testes, the numbers of primary spermatocytes and spermatogonia at G2 (4C peak as measured by flow cytometry) were higher at all stages of spermatogenesis compared with vehicle-treated testes, indicating protection of early spermatogonia by S1P, whereas the spermatid (1C) populations were similar. In conclusion, S1P appears to protect partially (16%-47%) testicular germ cells against radiation-induced cell death. This warrants further studies aimed at development of therapeutic agents capable of blocking sphingomyelin-induced pathways of germ cell loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号