首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal offspring size theory states that natural selection should balance reproductive output by optimizing between offspring size and offspring number. If a species has evolved an optimal offspring size, the fitness of larger females should be increased by simply producing more offspring of an optimum size. In contrast, when offspring size is not optimized, the morphological constraint hypothesis may apply, and in this case, maternal fitness is increased by producing the greatest number of the largest offspring that mothers are physically capable of producing. We used a log-log allometric regression approach on clutch size, egg size, and body size data to test the application of optimal offspring size theory and the morphological constraint hypothesis in the Mexican mud turtle (Kinosternon integrum) in southern Mexico. Our results indicate that this turtle seems to follow the morphological constraint hypothesis when all data are analyzed together, but when data are divided between small (< 140 mm plastron length) and large females (> 140 mm plastron length), optimal offspring (egg) size theory was supported only in large females, while the morphological constraint hypothesis was supported in small females. Our results thus indicate that K. integrum females may increase their fitness in two different, size-dependent ways as they grow from size at sexual maturity to maximum body size.  相似文献   

2.
Satoki Sakai  Akiko Sakai 《Oikos》2005,108(1):105-114
We tested the prediction of the terminal-stream-limitation model using Cardiocrium cordatum . This model predicts that the total offspring mass increases with offspring number, whereas it decreases with offspring size, because the loss of resources via maintenance respiration decreases with offspring number but increases with offspring size. We traced the growth curve of seeds and harvested seeds when they matured. The maximum gross growth rate of a seed had a strong positive effect on final seed dry mass, whereas the respiration cost had a strong negative effect on such mass. The total seed mass produced by a plant decreased with (or was independent of) an increase in the mean seed dry mass of the plant, whereas it increased with an increase in the number of seeds produced by the plant. An increase in seed number resulted in a decrease in the loss of resources due to respiration during seed growth, whereas an increase in the mean seed dry mass did not result in a decrease in the loss of resources due to respiration. Thus, we concluded that these results are consistent overall with the prediction of the model and that an increase in seed number rather than an increase in individual seed size is advantageous in terms of resource use efficiency.  相似文献   

3.
1. It is shown that reallocation of resources from dying offspring to their surviving siblings leads to significant reductions of fitness losses due to early developmental errors.
2. The reason resource reallocation can improve offspring fitness is because mothers do not provide offspring with the optimal amount of resources from the offspring's point of view. Rather, mothers trade their investment per offspring off against the number of offspring. Hence, surviving offspring can use reallocated resources fruitfully.
3. Animals suffering high offspring mortality can reduce this cost by producing large packages of resources shared by offspring. This allows for better reallocation of resources. Furthermore, by overstocking their resource packages with eggs they can anticipate embryo mortality and obtain offspring that will on average be more optimal in size.
4. In accordance with our prediction, parthenogenetic flatworms studied here produce larger cocoons than sexuals and they overstock smaller cocoons with eggs. However, higher embryo survival in large cocoons may also explain both these phenomena.  相似文献   

4.
The timing of reproduction strongly influences reproductive success in many organisms. For species with extended reproductive seasons, the quality of the environment may change throughout the season in ways that impact offspring survival, and, accordingly, aspects of reproductive strategies may shift to maximize fitness. Life-history theory predicts that if offspring environments deteriorate through the season, females should shift from producing more, smaller offspring early in the season to fewer, higher quality offspring later in the season. We leverage multiple iterations of anole breeding colonies, which control for temperature, moisture, and food availability, to identify seasonal changes in reproduction. These breeding colonies varied only by the capture date of the adult animals from the field. We show that seasonal cohorts exhibit variation in key reproductive traits such as inter-clutch interval, egg size and hatchling size consistent with seasonal shifts in reproductive effort. Overall, reproductive effort was highest early in the season due to a relatively high rate of egg production. Later season cohorts produced fewer, but larger offspring. We infer that these results indicate a strategy for differential allocation of resources through the season. Females maximize offspring quantity when environments are favorable, and maximize offspring quality when environments are poor for those offspring. Our study also highlights that subtle differences in methodology (such as capture date of study animals) may influence the interpretation of results. Researchers interested in reproduction must be conscious of how their organism’s reproductive patterns may shift through the season when designing experiments or comparing results across studies.  相似文献   

5.
Female investment in offspring size and number has been observed to vary with the phenotype of their mate across diverse taxa. Recent theory motivated by these intriguing empirical patterns predicted both positive (differential allocation) and negative (reproductive compensation) effects of mating with a preferred male on female investment. These predictions, however, focused on total reproductive effort and did not distinguish between a response in offspring size and clutch size. Here, we model how specific paternal effects on fitness affect maternal allocation to offspring size and number. The specific mechanism by which males affect the fitness of females or their offspring determines whether and how females allocated differentially. Offspring size is predicted to increase when males benefit offspring survival, but decrease when males increase offspring growth rate. Clutch size is predicted to increase when males contribute to female resources (e.g. with a nuptial gift) and when males increase offspring growth rate. The predicted direction and magnitude of female responses vary with female age, but only when per-offspring paternal benefits decline with clutch size. We conclude that considering specific paternal effects on fitness in the context of maternal life-history trade-offs can help explain mixed empirical patterns of differential allocation and reproductive compensation.  相似文献   

6.
To analyze the nature of size-number trade-off of organs, we develop models in which the effects of sink-limitation in the growth of organs and the loss of resources by maintenance respiration are taken into consideration. In these models, the resource absorption rate of an organ is proportional to either its absolute size or its surface area and either the initial size of an organ or the total initial size of the organs produced is fixed. In all models, organs are produced using a fixed amount of reserved resources and no additional resources become newly available for their growth. We theoretically show that size-number trade-offs are nonlinear if the resource absorption rate of an organ is proportional to the absolute size of the organ and the initial size of the individual organs is fixed or if the resource absorption rate of an organ is proportional to the surface area of the organ. In these nonlinear size-number trade-offs, the size of individual organs increases less rapidly than in linear trade-offs with a decrease in the number of organs and the total size of organs is an increasing function of the number of organs produced. This implies that increasing the number of organs produced is advantageous in terms of resource-use efficiency. In contrast, size-number trade-off is linear if the resource absorption rate of an organ is proportional to the absolute size of the organ and there is a linear trade-off between the initial size of organs and their number. To exemplify the effects of those size-number trade-offs on the life-history evolution, we calculate the optimal offspring sizes that maximize the number of offspring successfully being established. In the case of nonlinear size-number trade-offs, the optimal offspring sizes are smaller than the optimal offspring size in the case of linear size-number trade-offs, namely, that in the model of Smith and Fretwell (1974). Our optimal offspring size depends on the metabolism of organ development; the optimal offspring size decreases with an increase in maintenance respiration rate relative to the growth coefficient of organs.  相似文献   

7.
Offspring size can have large and direct fitness implications, but we still do not have a complete understanding of what causes offspring size to vary. Daphnia (water fleas) generally produce fewer and larger offspring when food is limited. Here, we use a mathematical model to show that this could be explained by either: (1) an advantage of producing larger eggs when food is limited; or (2) a lower boundary on egg volume (below which eggs do not have sufficient resources to be viable), that is similar in volume to the evolutionarily stable egg volume predicted by standard clutch size models. We tested the first possibilities experimentally by placing offspring from mothers kept at two food treatments (high and low - leading to relatively small and large eggs respectively) into two food treatments (same as maternal treatments, in a fully factorial design) and measuring their fitness (reproduction, age at maturity, and size at maturity). We also tested survival under starvation conditions of offspring produced from mothers at low and high food treatments. We found that (larger) offspring produced by low-food mothers actually had lower fitness as they took longer to reproduce, regardless of their current food treatment. Additionally, we found no survival advantage to being born of a food-stressed mother. Consequently, our results do not support the hypothesis that there is an advantage to producing larger eggs when food is limited. In contrast, data from the literature support the importance of a lower boundary on egg size.  相似文献   

8.
Plasticity of various life‐history traits has evoked continuing interest among biologists. For example, the plasticity of offspring characteristics as well as maternal effects may be affected by time limitation and by limitation caused by changing environmental conditions. However, it is difficult to tell apart the effect of a time constraint, experienced by the mother, from food limitation, which is experienced by the offspring at the end of the season. In this study, we controlled for food limitation and simulated a time constraint for the mother. We tested how the seed beetle, Coccotrypes dactyliperda, adapts its reproductive investment after encountering a period of low availability of seeds as oviposition sites, as compared with females that encountered a seed at an early adult stage, while maintaining a similar food supply for offspring of both groups. We show that time limitation has a significant effect on the reproductive investment patterns of females. Females that were prevented from ovipositing, but provided with abundant food and later given oviposition sites, produced more, but smaller offspring than control females. Although the number of offspring increased, there was no indication of competition for food between offspring. We propose that, in order to compensate for the loss of time, mothers that experienced a shortage of oviposition sites influence their offspring to mature faster at the cost of a smaller than average body size. This study emphasizes the importance of considering more than one offspring generation in order to correctly estimate female fitness. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 728–736.  相似文献   

9.
According to life-history theory, the evolution of offspring size is constrained by the trade-off between allocation of resources to individual offspring and the number of offspring produced. Existing models explore the ecological consequences of offspring size, whereas number is invariably treated simply as an outcome of the trade-off with size. Here I ask whether there is a direct evolutionary advantage of increased allocation to offspring number under environmental unpredictability. Variable environments are expected to select for diversification in the timing of egg hatch and seed germination, yet the dependence of the expression of diversification strategies, and thus parental fitness, on offspring number has not previously been recognized. I begin by showing that well-established sampling theory predicts that a target bethedging diversification strategy is more reliably achieved as offspring number increases. I then use a simulation model to demonstrate that higher offspring number leads to greater geometric mean fitness under environmental uncertainty. Natural selection is thus expected to act directly to increase offspring number under assumptions of environmental unpredictability in season quality.  相似文献   

10.
The number of offspring attaining reproductive age is an important measure of an individual's fitness. However, reproductive success is generally constrained by a trade-off between offspring number and quality. We conducted a factorial experiment in order to study the effects of an artificial enlargement of offspring number and size on the reproductive success of female bank voles (Clethrionomys glareolus). We also studied the effects of the manipulations on growth, survival and reproductive success of the offspring. Potentially confounding effects of varying maternal quality were avoided by cross-fostering. Our results showed that the number of offspring alive in the next breeding season was higher in offspring number manipulation groups, despite their smaller body size at weaning. Offspring size manipulation had no effect on offspring growth or survival. Further, the first litter size of female offspring did not differ between treatments. In conclusion, females may be able to increase the number of offspring reaching reproductive age by producing larger litters, whereas increasing offspring size benefits neither the mother nor the offspring.  相似文献   

11.
Summary The effect is modeled of a positive relationship between clutch size and offspring fitness on the optimal investment in offspring. In species which meet the assumptions of the model, the model predicts a positive correlation between maternal resource level and offspring size. If larger mothers are able to allocate more resources to offspring, then the model would also predict a positive correlation between maternal size and offspring size when the assumptions of the model are met. Thus, this model may help explain both among and within individual variation in offspring size. When offspring are produced in groups and the number of offspring killed per clutch is limited by predator satiation, offspring in larger clutches may experience a higher probability of survival. Such a life style may be found in animals such as sea turtles. Offspring size is positively correlated with maternal size in some members of this group.  相似文献   

12.
The trade‐off between offspring size and number can present a conflict between parents and their offspring. Because egg size is constrained by clutch size, the optimal egg size for offspring fitness may not always be equivalent to that which maximizes parental fitness. We evaluated selection on egg size in three turtle species (Apalone mutica, Chelydra serpentina and Chrysemys picta) to determine if optimal egg sizes differ between offspring and their mothers. Although hatching success was generally greater for larger eggs, the strength and form of selection varied. In most cases, the egg size that maximized offspring fitness was greater than that which maximized maternal fitness. Consistent with optimality theory, mean egg sizes in the populations were more similar to the egg sizes that maximized maternal fitness, rather than offspring fitness. These results provide evidence that selection has maximized maternal fitness to achieve an optimal balance between egg size and number.  相似文献   

13.
We found in an earlier study that mosquitofish (Gambusia affinis and G. holbrooki) ceased reproduction in the late summer, long before the end of warm weather, stored fat, then utilized reserves to survive the winter and initiate reproduction the following spring. We hypothesized that this pattern of fat utilization was a life history adaptation that enabled the fish to acquire food resources in the autumn then allocate them to reproduction the following spring when the fitness of the young would be greater. Here we evaluate one aspect of this hypothesis by evaluating the probability of survival to maturity and fecundity of young as a function of date of birth. We placed cohorts comprising eight to ten litters of young born early‐, mid‐ or late in the reproductive season in replicate field enclosures. The entire experiment was repeated in two different years. Early‐born young had a significantly higher probability of survival to maturity but did not differ in fecundity relative to the last cohort of the season. Early‐born young also attained maturity early enough to reproduce in their year of birth while late‐born young had to overwinter before reproduction. The fitness consequences to the mother of either producing one more litter of young at the end of the season, versus instead storing fat and reproducing the following spring are not as determinate as are the effects of date of birth on offspring fitness. Females most often gain fitness by not producing one last litter and instead over‐wintering. If, however, the overwinter survival of offspring is not influenced by their size at the end of the season, then a female's fitness could be enhanced by producing one more litter late in the season. If instead the probability of overwinter survival is strongly influenced by the size of offspring at the end of the season, then our results suggest that a female gains more by deferring reproduction and storing for overwinter survival and reproduction the following spring.  相似文献   

14.
Since Smith and Fretwell's seminal article in 1974 on the optimal offspring size, most theory has assumed a trade-off between offspring number and offspring fitness, where larger offspring have better survival or fitness, but with diminishing returns. In this article, we use two ubiquitous biological mechanisms to derive the shape of this trade-off: the offspring's growth rate combined with its size-dependent mortality (predation). For a large parameter region, we obtain the same sigmoid relationship between offspring size and offspring survival as Smith and Fretwell, but we also identify parameter regions where the optimal offspring size is as small or as large as possible. With increasing growth rate, the optimal offspring size is smaller. We then integrate our model with strategies of parental care. Egg guarding that reduces egg mortality favors smaller or larger offspring, depending on how mortality scales with size. For live-bearers, the survival of offspring to birth is a function of maternal survival; if the mother's survival increases with her size, then the model predicts that larger mothers should produce larger offspring. When using parameters for Trinidadian guppies Poecilia reticulata, differences in both growth and size-dependent predation are required to predict observed differences in offspring size between wild populations from high- and low-predation environments.  相似文献   

15.
Across a variety of taxa, large offspring have been demonstrated to have a fitness advantage over smaller offspring of the same species. However, producing large offspring often comes at the cost of having to produce fewer young, and the payoff (and thus, evolutionary outcome) of this trade-off is expected to vary between environments. Atlantic mollies (Poecilia mexicana: Poeciliidae, Teleostei), inhabiting a sulfidic cave and various non-sulfidic surface habitats in Tabasco (Mexico), are reproductively isolated and evolved divergent female life-history traits: females of the cave ecotype produce considerably fewer, but larger offspring. Stressful (sulfidic) environments may favor the production of larger offspring, as they are better able to cope with chemical stressors. It remains to be determined though if increased offspring survival outweighs the fitness cost of producing fewer but larger offspring even under benign laboratory conditions. We tested 30-day newborn survival of offspring from wild-caught P. mexicana females from diverging populations in a low-density, no predation, no cannibalism, and ad-libitum-food, benign laboratory environment. Survival rates were highly skewed towards larger cave molly offspring; however, surface molly females still had a higher fitness than cave molly females in terms of higher total numbers of surviving offspring. Our study provides evidence for an innate fitness advantage of larger cave molly offspring. Furthermore, the observed differences in life-history strategies could promote further divergence and reproductive isolation among these ecotypes of P. mexicana, because cave molly females immigrating into the adjacent surface habitats would most likely be selected against.  相似文献   

16.
Parents can increase the fitness of their offspring by allocating nutrients to eggs and/or providing care for eggs and offspring. Although we have a good understanding of the adaptive significance of both egg size and parental care, remarkably little is known about the co-evolution of these two mechanisms for increasing offspring fitness. Here, we report a parental removal experiment on the burying beetle Nicrophorus vespilloides in which we test whether post-hatching parental care masks the effect of egg size on offspring fitness. As predicted, we found that the parent's presence or absence had a strong main effect on larval body mass, whereas there was no detectable effect of egg size. Furthermore, egg size had a strong and positive effect on offspring body mass in the parent's absence, whereas it had no effect on offspring body mass in the parent's presence. These results support the suggestion that the stronger effect of post-hatching parental care on offspring growth masks the weaker effect of egg size. We found no correlation between the number and size of eggs. However, there was a negative correlation between larval body mass and brood size in the parent's presence, but not in its absence. These findings suggest that the trade-off between number and size of offspring is shifted from the egg stage towards the end of the parental care period and that post-hatching parental care somehow moderates this trade-off.  相似文献   

17.
The costs of reproduction are an important constraint that shapes the evolution of life histories, yet our understanding of the proximate mechanism(s) leading to such life‐history trade‐offs is not well understood. Oxidative stress is a strong candidate measure thought to mediate the costs of reproduction, yet empirical evidence supporting that increased reproductive investment leads to oxidative stress is equivocal. We investigated whether territory quality and offspring provisioning increase oxidative stress in male snow buntings (Plectrophenax nivalis) using a repeated sampling design. We show that arrival oxidative stress is not a constraint on territory quality or the number of offspring fledged. Nevertheless, owners of higher‐quality territories experienced an oxidative cost, with this cost increasing more rapidly in younger males. Males that provisioned offspring at a high rate also experienced increased oxidative stress. Together, these findings support the potential role of oxidative stress in mediating life‐history trade‐offs. Future work should consider that reproductive workload is not limited to offspring care, and other activities – including territory defence – may contribute significantly to the costs of reproduction.  相似文献   

18.
Polyembryony, referring here to situations where a nucellar embryo is formed along with the zygotic embryo, has different consequences for the fitness of the maternal parent and offspring. We have developed genetic and inclusive fitness models to derive the conditions that permit the evolution of polyembryony under maternal and offspring control. We have also derived expressions for the optimal allocation (evolutionarily stable strategy, ESS) of resources between zygotic and nucellar embryos. It is seen that (i) Polyembryony can evolve more easily under maternal control than under that of either the offspring or the ‘selfish’ endosperm. Under maternal regulation, evolution of polyembryony can occur for any clutch size. Under offspring control polyembryony is more likely to evolve for high clutch sizes, and is unlikely for low clutch sizes (<3). This conflict between mother and offspring decreases with increase in clutch size and favours the evolution of polyembryony at high clutch sizes, (ii) Polyembryony can evolve for values of “x” (the power of the function relating fitness to seed resource) greater than 0.5758; the possibility of its occurrence increases with “x”, indicating that a more efficient conversion of resource into fitness favours polyembryony. (iii) Under both maternal parent and offspring control, the evolution of polyembryony becomes increasingly unlikely as the level of inbreeding increases, (iv) The proportion of resources allocated to the nucellar embryo at ESS is always higher than that which maximizes the rate of spread of the allele against a non-polyembryonic allele.  相似文献   

19.
Maternal effects on offspring size can have a strong effect on fitness, as larger offspring often survive better under harsh environmental conditions. Selection should hence favour mothers that find an optimal solution to the offspring size versus number tradeoff. If environmental conditions are variable, there will not be a single optimal offspring size, as predicted in a constant environment, but plastic responses can be favoured. To be able to adjust offspring size in an adaptive manner, mothers have to use environmental cues to predict offspring environmental conditions. Cues can be unreliable, however, particularly in species where individuals occupy different niches at different life stages. Here we model the evolution of plasticity of offspring size when the environmental cues mothers use to predict the conditions experienced by their offspring are not perfectly reliable. Our results show that plastic strategies are likely to be superior to fixed strategies in a stochastically varying environment when the environmental cues are at least moderately reliable, with the threshold depending on plasticity costs and the difference of resources available to mothers. Plasticity is more likely to occur if resource availability is not too different between environments. For any given scenario, plasticity in offspring size is favoured if offspring survival varies greatly between environmental states. Whenever plastic strategies are optimal, the occurring switches performed by mothers between small and large offspring are predicted to be substantial, as small adjustments are unlikely to reap fitness benefits great enough to overcome the costs of plasticity.  相似文献   

20.
The generation of live offspring from vitrified oocytes   总被引:1,自引:0,他引:1  
Oocyte cryopreservation is extremely beneficial for assisted reproductive technologies, the treatment of infertility and biotechnology and offers a viable alternative to embryo freezing and ovarian grafting approaches for the generation of embryonic stem cells and live offspring. It also offers the potential to store oocytes to rescue endangered species by somatic cell nuclear transfer and for the generation of embryonic stem cells to study development in these species. We vitrified mouse oocytes using a range of concentrations of trehalose (0 to 0.3 M) and demonstrated that 0.1 and 0.3 M trehalose had similar developmental rates, which were significantly different to the 0.2 M cohort (P<0.05). As mitochondria are important for fertilisation outcome, we observed that the clustering and distribution of mitochondria of the 0.2 M cohort were more affected by vitifrication than the other groups. Nevertheless, all 3 cohorts were able to develop to blastocyst, following in vitro fertilisation, although developmental rates were better for the 0.1 and 0.3 M cohorts than the 0.2 M cohort (P<0.05). Whilst blastocysts gave rise to embryonic stem-like cells, it was apparent from immunocytochemistry and RT-PCR that these cells did not demonstrate true pluripotency and exhibited abnormal karyotypes. However, they gave rise to teratomas following injection into SCID mice and differentiated into cells of each of the germinal layers following in vitro differentiation. The transfer of 2-cell embryos from the 0.1 and 0.3 M cohorts resulted in the birth of live offspring that had normal karyotypes (9/10). When 2-cell embryos from vitrified oocytes underwent vitrification, and were thawed and transferred, live offspring were obtained that exhibited normal karyotypes, with the exception of one offspring who was larger and died at 7 months. We conclude that these studies highlight the importance of the endometrial environment for the maintenance of genetic stability and thus the propagation of specific genetic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号