首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human lymphocytes low doses of X-rays can decrease the number of chromatid deletions induced by subsequent high doses of sparsely ionizing X-rays. Because of the concern with the carcinogenic effects of low doses of -particles from radon in homes, experiments were carried out to see if low doses of X-rays could also decrease the yield of chromosomal aberrations induced by subsequent exposure to radon. Human peripheral blood lymphocytes were irradiated with low doses of X-rays (2 cGy) at 48 h of culture, exposed to radon at 72 h of culture, and analyzed for the presence of chromatid aberrations at subsequent intervals. The frequency of chromatid aberrations induced by radon alone increased with time after exposure, indicating exaggerated differences in the stage sensitivity of cell cycle stages to high-LET radiation. Furthermore, the numbers of aberrations per cell did not follow a Poisson distribution but were over dispersed, as might be expected since high-LET radiations have a high relative biological effectiveness compared with low-LET radiations. Nevertheless, lymphocytes exposed to 2 cGy of X-rays before radon exposure contained approximately one-half the number of chromatid deletions compared with lymphocytes treated with radon alone and analzed at the same time. Thus, the putative chromosomal repair mechanism induced by low doses of sparsely ionizing radiation is also effective in reducing chromosomal aberrations induced by radon, which hitherto had been thought to be relatively independent of repair processes.  相似文献   

2.
Although a number of chemicals can alter DNA repair function, little is known about the effect of chronic, low dose exposure to environmental agents on DNA repair capacity. Lymphocytes provide a potential target population to study the effects of chronic exposures to low doses of toxic chemicals since they are an easily obtainable cell population. Prior to investigating the repair capacity of chemically exposed lymphocytes, the repair by chemically naive lymphocytes has been characterized. In the present study, the DNA repair capacity of isolated rat lymphocytes was characterized. The capacity of these cells to repair single-strand DNA breaks (SSB) was determined after in vitro treatments with X-rays. The effect of in vitro exposure to 3-aminobenzamide (3-AB) on DNA repair capacity was also assessed. The levels of induced SSB and their repair were determined using the alkaline elution technique. Splenic lymphocytes were isolated and placed in culture medium 18 h prior to assessment of repair capacity, but were not stimulated with mitogens. A dose-dependent increase in SSB was observed following exposure of lymphocytes to 300 or 600 rad. The rate of SSB repair was analyzed after a dose of 400 rad. Approximately 80% of the DNA strand break repair was completed within 60 min. The half-time for repair of these lesions by lymphocytes was determined to be 21.3 min. Exposure to 3-AB resulted in a decrease in the rate of repair of the X-ray-induced strand breakage. Although no SSB were detected at the end of a 1-h 3-AB treatment of non-irradiated cells, significant accumulation of SSB was observed after a 2-h treatment. The characterization of DNA repair in rat lymphocytes following in vitro exposure to X-rays will allow us to investigate the effects of chronic, in vivo toxicant exposure on the capacity of isolated lymphocytes to repair DNA damage produced by X-rays.  相似文献   

3.
Human lymphocytes exposed to low doses of ionizing radiation from incorporated tritiated thymidine or from X-rays become less susceptible to the induction of chromatid breaks by high doses of X-rays. This response can be induced by 0.01 Gy (1 rad) of X-rays, and has been attributed to the induction of a repair mechanism that causes the restitution of X-ray-induced chromosome breaks. Because the major lesions responsible for the induction of chromosome breakage are double-strand breaks in DNA, attempts have been made to see if the repair mechanism can affect various types of clastogenic lesions induced in DNA by chemical mutagens and carcinogens. When cells exposed to 0.01 Gy of X-rays or to low doses of tritiated thymidine were subsequently challenged with high doses of tritiated thymidine or bleomycin, which can induce double-strand breaks in DNA, or mitomycin C, which can induce cross-links in DNA, approximately half as many chromatid breaks were induced as expected. When, on the other hand, the cells were challenged with the alkylating agent methyl methanesulfonate (MMS), which can produce single-strand breaks in DNA, approximately twice as much damage was found as was induced by MMS alone. The results indicate that prior exposure to 0.01 Gy of X-rays reduces the number of chromosome breaks induced by double-strand breaks, and perhaps even by cross-links, in DNA, but has the opposite effect on breaks induced by the alkylating agent MMS. The results also show that the induced repair mechanism is different from that observed in the adaptive response that follows exposure to low doses of alkylating agents.  相似文献   

4.
The induction of mutations following combined treatment with acrylamide (AA) plus X-rays has been determined using the dominant lethal mutations test in Pzh:SFISS male mice. Combinations of a mutagenic dose of both agents (1.00 Gy, 125 mg/kg b.w.) and a non-mutagenic dose, i.e., a dose that alone does not produce dominant lethals (0.25 Gy, 25 mg/kg b.w.), were used. For the discussion of the effects of combined action of X-rays and acrylamide the term 'enhancement in risk' was used whenever the effects observed after combined exposure significantly exceeded the sum of the effects produced separately by the agents. Such an enhanced risk has been observed in late spermatids after combined action of X-rays and AA at non-mutagenic doses, and in spermatozoa, spermatids and late spermatocytes after exposure to mutagenic doses.  相似文献   

5.
Embryotoxic effects of 1,2-dibromoethane (DBE), a compound still widely used in industry, have been analyzed using chick embryos in ovo. Administration on embryonic days (ED) 3,4 or 5 induced dose-dependent embryotoxicity, manifested namely as the early embryonic death. A serious disturbance of the vascular system represented probably the main cause of strong embryolethality and growth retardation in the group of survivors. Amniotic bands in the parietal region and defects of brain and aorta prevailed in the malformation spectrum registered on ED 10. The local character of early induced changes suggests a direct effect of DBE itself in the embryotoxic action. This process is probably accomplished through interaction with lipids in cell membranes owing to the hydrophobic character of DBE molecules. The results, however, did not exclude an involvement of reactive metabolites in final embryotoxicity via the formation of DNA-adducts. In any case, a decreasing embryotoxicity of DBE with the age of treated embryos documented that the onset of liver function, assumed to occur on ED 5, did not increase the efficacy of DBE bioactivation. Our results confirmed the short-term embryotoxic properties of DBE reported in rat embryonic cultures. In addition, the in ovo system enabled us to reveal also long-term consequences represented namely by the formation of amniotic bands, not detectable in studies in vitro. The results obtained with the chick embryo in ovo confirmed the suitability of this system for embryotoxicity testing.  相似文献   

6.
A series of mutation experiments was carried out with Drosophila melanogaster using inhalation exposure. 1,2-Dichloroethane (DCE) and 1,2-dibromoethane (DBE) were active in the sex-linked recessive lethal assay (SLRLT), whereas dichloromethane, dibromomethane, 1,2-dichloropropane and 1,3-dichloropropane were not. Compared to DBE, DCE is a less potent mutagen in the SLRL system. For both compounds, there is no evidence of a clear-cut dose-rate effect. DCE and dichloromethane were also investigated in the somatic mutation and recombination test (SMART), with results similar to those from the SLRLT. For DCE the genetic activity profile was further analyzed by carrying out a sex-chromosome loss assay and a complementation analysis of a series of induced recessive lethal mutations. A review of the use of inhalation in mutagenicity assays with Drosophila shows that this route of exposure is an effective one. Especially with chronic exposure times, rather low exposure concentrations can be detected. With compounds of intermediate volatility inhalation is not superior to other modes of administration; nor is it likely to be sensitive enough for in situ monitoring.  相似文献   

7.
The search of the most significant parameters of the liver initial state of mice Balb/c (males) for the development of the biological consequences under a combined action of the Tween-80 (0.3% solution) in the 10% solution of the aqueous acetone and X-rays at the doses of 4 and 5 Gy during one month after exposure was performed by means of the software program for the experimental data analysis. The study has shown both the absence of the same correlation relationships and the existence of two groups of relationships in terms of the coefficient correlation values under the alteration of the X-ray dose. The assumption has been made about different mechanisms underlying regulation of the biochemical process in the murine liver after the combined action of low-toxicity chemical agents at low doses and X-rays irradiation at sublethal doses, whose contribution to the development of effects of different factors depends on the radiation dose.  相似文献   

8.
Combined treatment with low doses of X-rays plus cyclophosphamide (0.25 Gy+25 mg/kg body weight) or X-rays plus mitomycin C (0.25 Gy+1.75 mg/kg body weight) did not induce significant dominant lethal effects in any stage of spermatogenesis when a parameter representing pre- and postimplantation loss, such as the decrease of live implants per female, was applied. After combined exposure to high doses of X-rays plus cyclophosphamide (1.00 Gy+100 mg/kg body weight) an increase of dominant lethal mutations (DLMs) was observed in differentiating spermatogonia, spermatids, and spermatozoa with the same parameter. Combined treatment with high doses of X-rays plus mitomycin C (1.00 Gy+5.25 mg/kg body weight) produced DLMs in differentiating spermatogonia and late spermatocytes. A calculation of enhanced risk was applied to the data of DLMs from the combined treatment regimen and was based on the proportion of dead implants (postimplantation loss only). Enhanced risk could be shown not only after high but also after low combined exposure to X-rays plus cyclophosphamide and X-rays plus mitomycin C. With low doses this enhanced risk was observed in spermatids for X-rays plus cyclophosphamide and in differentiating spermatogonia to early spermatocytes for X-rays plus mitomycin C.  相似文献   

9.
B. L. Kaul 《Chromosoma》1969,26(4):469-474
Experiments were carried out to study if chromatid breaks induced by nitrosoguanidine in combination with some known radiomimetics and X-rays interact with each other. It has been seen that nitrosoguanidine induced breaks exhibit full interaction in production of isochromatid breaks and interchanges with diepoxybutane, ethylmethane sulfonate and ethyleneimine but fail to do so with X-rays though the effects were additive. This has been interpreted to indicate that nitrosoguanidine produced aberrations have both, temporal and qualitative similarities with those of diepoxybutane, ethylmethane sulfonate and ethyleneimine and not with those induced by X-rays.  相似文献   

10.
Red Blood Cell Damage by Shear Stress   总被引:16,自引:4,他引:12       下载免费PDF全文
A series of careful studies has been made on blood damage in a rotational viscometer. Specific attention has been focused on the effects of solid surface interaction, centrifugal force, air interface interaction, mixing of sheared and unsheared layers, cell-cell interaction, and viscous heating. The results show that there is a threshold shear stress, 1500 dynes/cm2, above which extensive cell damage is directly due to shear stress, and the various secondary effects listed above are negligible. By analysis of these results and those of prior workers it is shown that the exposure time-shear stress plane is divided into two distinct regimes. In the regime of relatively low stresses and exposure times there is relatively little damage, and the damage is dominated by solid surface interaction effects. In the other regime, at high stresses and exposure times, stress effects alone dominate and very high rates of hemolysis occur. The experimental findings of all prior workers are shown to be consistent when interpreted in this way.  相似文献   

11.
The expression of the DNA repair protein human O(6)-alkylguanine-DNA alkyltransferase (AGT) in Escherichia coli strains GWR109 or TRG8 that lack endogenous AGT greatly increased the toxicity and mutagenicity of 1,2-dibromoethane (DBE). Pretreatment of strain TRG8 expressing human AGT, which is permeable to exogenous drugs, with the AGT inhibitor O(6)-benzylguanine (BG) abolished the lethal and mutagenic effects of DBE, indicating that an active AGT is required for promoting DBE genotoxicity. This was confirmed by the observation that E. coli expressing either the C145A AGT mutant, which is inactive due to loss of the alkyl acceptor site, or mutants Y114E and R128A, which are inactive due to alteration of the DNA binding domain, did not enhance the action of DBE. However, the AGT mutant protein P138M/V139L/P140K, which is active in repairing methylated DNA but is totally resistant to inactivation by BG due to alterations in the active site pocket, was unable to enhance the genotoxicity of DBE. Similarly, other mutants, G156P, Y158H and K165R that are strongly resistant to BG, were much less effective than wild type AGT in mediating the genotoxicity of DBE. Mutant P140A, which is moderately resistant to BG, did increase mutations in response to DBE but was less active than wild type. These results suggest that human AGT is able to interact with a DNA lesion produced by DBE but, instead of repairing it, converts it to a more genotoxic adduct. This interaction is prevented by mutations that modify the active site of AGT to exclude BG.  相似文献   

12.
In the companion paper we demonstrated that hepatic vitamin E in rats becomes depleted and extrahepatic pools of vitamin E are altered by treatment with 1,2-dibromoethane (DBE). Vitamin E depletion may be dependent upon initial steps of DBE metabolism that are either oxidative (cytochrome P450 dependent) or conjugative (glutathione transferase dependent). That the liver content of glutathione (GSH) and vitamin E, the plasma concentration of vitamin E, and the serum activities of AST and ALT may be influenced by cytosolic metabolism of DBE was assessed by comparison of findings from rats treated with either 1,2-dichloroethane (DCE) or 1-bromo-2-chloroethane (BCE). The extent of oxidative metabolism was diminished by the use of tetradeutero-DBE (d4-DBE), and the availability of GSH for conjugative metabolism was diminished by pretreatment of rats with L-buthionine-S,R-sulfoximine (BSO) prior to treatment with DBE. Our results indicate that neither DCE nor BCE provokes a liver vitamin E depletion in rats, that d4-DBE treatment hastens but does not enhance the observed hepatic vitamin E depletion by comparison to animals treated with an equimolar dose of DBE, and that BSO pretreatment prevented the hepatic vitamin E depletion observed from animals treated with DBE alone. These results indicate that hepatic vitamin E depletion is the unique sequelae to conjugation of GSH with DBE, and we suggest the reactive episulfonium ion intermediate or a macromolecular adduct of this ion derived from DBE may play a role in liver vitamin E depletion associated with exposure to DBE.  相似文献   

13.
The aim of this study was to assess the effects of 2-weeks’ X-ray and/or nonylphenol (NP) exposure on male mice’s sperm count and quality. Pzh:SFIS mice were exposed to X-rays (0.05 Gy, 0.10 Gy, 0.20 Gy) or to nonylphenol (25 mg/kg bw, 50 mg/kg bw, 100 mg/kg bw) or to both agents (0.05 Gy + 25 mg/kg bw NP, 0.10 Gy + 50 mg/kg bw NP). At 24 h and 5 weeks after the end of exposure the sperm count, morphology and frequency of DNA damage in the male germ cells were estimated. Each agent alone diminished sperm count and morphology. The dose of 0.05 Gy of X-rays decreased the frequency of DNA damage. Combined exposure to lower doses of both agents significantly improved sperm morphology and decreased the level of DNA damage compared to one agent alone. Combined exposure to higher doses reduced the frequency of DNA damage compared to the effect of the appropriate dose of NP. Results of combined exposure to low doses of both agents suggest that 0.05 Gy of X-rays stimulate the DNA damagecontrol system and in consequence repair of DNA caused by X-rays and NP. It may be correlated with increased antioxidant capacity.  相似文献   

14.
First attempt to analyse radiation modifying action of 52 compounds--derivatives of 1,4-dihydropyridine is presented. Many of these compounds have electrodonating and antioxidative activities. Local radioprotective effects of the substances has been studied using experimental model with partial beta- and X-rays exposure of sole skin in rats to doses of 40 and 30 Gy. Comparison of drug effectiveness and chemical structure revealed the changes of activity dependence due to modification of peripheral radicals of 1,4-dihydropyridine ring. Radioprotective and radiosensitizing compounds with general low toxicity have been found. It is suggested to use the most active compounds for the development of medicinal forms for prevention of local skin and mucosal radiation injuries. Positive results have been obtained with dieton a radioprotective compound of the same type, in radiotherapy.  相似文献   

15.
PurposeThe radioprotective effects of Dragon's blood (DB) and its extracts (DBE) were investigated using the chromosomal aberrant test, micronucleus and oxidative stress assay for anti-clastogenic and anti-oxidative activity.Materials and methodsAdult BALB/C mice were exposed to the whole body irradiation with 4 Gy 60Co γ-rays. DB and DBE were administered orally once a day from 5 days prior to irradiation treatment to 1 day after irradiation. The mice were sacrificed on 24 h after irradiation. The cells of bone marrow were measured by counting different types of chromosomal aberrations and the frequency of micronuclei. Oxidative stress response was carried out by analysis of serum from blood.ResultsDB and DBE significantly decreased the number of bone marrow cells with chromosome aberrations after irradiation with respect to irradiated alone group. The administration of DB and DBE also significantly reduced the frequencies of micronucleated polychromatic erythrocytes (MPCE) and micronucleated normochromatic erythrocytes (MNCE). In addition, DB and DBE markedly increased the activity of antioxidant enzymes and the level of antioxidant molecular. Malondialdehyde (MDA) and nitric oxide (NO) levels in serum were significantly reduced by DB and DBE treatment.ConclusionsOur data suggested that DB and DBE have potential radioprotective properties in mouse bone marrow after 60Co γ-ray exposure, which support their candidature as a potential radioprotective agent.  相似文献   

16.
Specific-locus mutation frequencies in mouse stem-cell spermatogonia were determined in 3 experiments in which mature male mice were exposed to 100,m 300, or 500 R of X-rays followed, 24 h later, by intraperitoneal injection of 100 mg/kg of ethylnitrosourea (ENU). The purpose was to find out if the mutation frequencies would be augmented over those expected on the basis of additivity of the effects of the separate treatments. Such augmentation had been observed in earlier work in which exposure to 100 or 500 R of X-rays was followed 24 h later by a second exposure of 500 R. No augmentation was observed for X-rays followed by ENU. The mutation frequencies in all 3 experiments actually fell below those expected on the basis of additivity, although the reductions were not statistically significant.  相似文献   

17.
In the present world, X-rays have been regarded as one of the most efficient tools in medicine, industry and research. On the contrary, extensive human exposure to these rays is responsible for causing detrimental effects on physiological system. The aim of the present study was to investigate the role of zinc (Zn), if any, in mitigating the adverse effects induced by fractionated X-irradiation on rat brain. Female Sprague-Dawley rats weighing 170–200 g were divided into four different groups viz.: (a) normal control, (b) X-irradiated (21Gy), (c) zinc treated (227 mg/L in drinking water) and (d) X-irradiated + zinc treated. The skulls of animals belonging to groups (b) and (d) were exposed to X-rays in 30 fractions. Each fraction delivered a radiation dose of 70 rads, and rats were exposed to two fractions every day for 15 days, consecutively. X-ray treatment resulted in significant alterations in the neurobehavior, neurotransmitter levels and neuro-histoarchitecture of rats, whereas zinc co-treatment with X-rays resulted in significant improvement in these parameters. X-ray exposure also caused a significant increase in the levels of lipid peroxidation as well as activities of catalase and superoxide dismutase, which however were decreased upon simultaneous Zn treatment. On the contrary, X-ray treatment down-regulated the glutathione system, which were found to be up-regulated by zinc co-treatment. Further, protein expressions of p53 and NF-?B were found to be significantly elevated after X-irradiation, which were reversed following Zn supplementation. Hence, Zn seems to be an effective agent in mitigating the detrimental effects caused by exposure to X-rays.  相似文献   

18.
Repair replication of DNA has been studied in first instar larvae of Drosophila melanogaster with isopycnic centrifugation techniques. Larvae were fed BUdR, FUdR, streptomycin, penicillin, and Fungazone for two to four hours prior to exposure to UV, X-rays, MMS, or EMS. Feeding was continued for four hours in the presence of (3)HBUdR and DNA was isolated from whole larvae. Repair replication is stimulated by each of these agents. MMS is about 10 times as potent as EMS in stimulating repair synthesis. A dose of 200 ergs/mm(2) largely saturates the level of repair replication observed after UV irradiation. Repair replication rises between 0 and 80,000 R of X-rays before falling off. Semiconservative synthesis is seriously inhibited above a dose of 40,000 R of X-rays. Photorepair has been detected as a reduction in repair synthesis resulting from post-irradiation exposure to photoreactivating light. The same treatment has no detectable effect on X-ray-stimulated repair replication. Repair replication is insensitive to the presence of caffeine or hydroxyurea during the final incubation, although semiconservative synthesis is strongly inhibited by these agents. A mixture of BUdR and (3)HTdR can be used to replace (3)HBUdR in detecting repair replication.  相似文献   

19.
1,2-dibromoethane (DBE) is a common environmental contaminant; it is potentially carcinogenic and has been detected in soil and groundwater supplies. Most of the biodegradation studies to date have been performed under anaerobic conditions or in the context of soil remediation, where the pollutant concentration was in the parts per billion range. In this work a mixed bacterial culture capable of complete aerobic mineralization of concentrations of DBE up to 1 g liter(-1) under well-controlled laboratory conditions was enriched. In order to verify biodegradation, formation of biodegradation products as well as the disappearance of DBE from the biological medium were measured. Complete mineralization was verified by measuring stoichiometric release of the biodegradation products. This mixed culture was found to be capable of degrading other halogenated compounds, including bromoethanol, the degradation of which has not been reported previously.  相似文献   

20.
There has been a recent upsurge of interest in radiation-induced bystander effects. Previously we reported that the accumulation of inducible nitric oxide (NO) synthase (iNOS) was induced only in human glioblastoma mutant (m) p53 cells by acute irradiation with X-rays, suggesting a suppression of iNOS induction after acute irradiation with X-rays in wtp53 cells. NO secreted from the irradiated mp53 cells induced the accumulation of p53 in unirradiated wtp53 cells. The radiosensitivity of wtp53 cells was reduced by exposure to the conditioned medium from irradiated mp53 cells, suggesting that NO is an initiator of radiation-induced bystander effects. In the present study, we found that the accumulation of iNOS in wtp53 cells was induced by chronic irradiation with gamma-rays followed by acute irradiation with X-rays, but not by each one. It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation. We found that chronic irradiation with gamma-rays did not inhibit the accumulation of p53 after exposure to the conditioned medium from the irradiated mp53 cells. However, the decay of accumulated p53 was stimulated by chronic irradiation with gamma-rays. At the same time, the accumulation of Hdm2 was observed; suggesting that chronic irradiation with gamma-rays may stimulate the degradation of p53 accumulated by NO-mediated bystander effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号