首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-level expression of G-protein-coupled receptors (GPCRs) in functional form is required for structure-function studies. The main goal of the present work was to improve expression levels of beta2-adrenergic receptor (beta2-AR) so that biophysical studies involving EPR, NMR, and crystallography can be pursued. Toward this objective, the total synthesis of a codon-optimized hamster beta2-AR gene suitable for high-level expression in mammalian systems has been accomplished. Transient expression of the gene in COS-1 cells resulted in 18 +/- 3 pmol beta2-AR/mg of membrane protein, as measured by saturation binding assay using the beta2-AR antagonist [3H] dihydroalprenolol. Previously, we reported the development of an HEK293S tetracycline-inducible system for high-level expression of rhodopsin. Here, we describe construction of beta2-AR stable cell lines using the HEK293S-TetR-inducible system, which, after induction, express wild-type beta2-AR at levels of 220 +/- 40 pmol/mg of membrane protein corresponding to 50 +/- 8 microg/15-cm plate. This level of expression is the highest reported so far for any wild-type GPCR, other than rhodopsin. The yield of functional receptor using the single-step affinity purification is 12 +/- 3 microg/15-cm plate. This level of expression now makes it feasible to pursue structure-function studies using EPR. Furthermore, scale-up of beta2-AR expression using suspension cultures in a bioreactor should now allow production of enough beta2-AR for the application of biophysical techniques such as NMR spectroscopy and crystallography.  相似文献   

2.
Semliki Forest virus vectors were applied for the evaluation of 101 G protein-coupled receptors in three mammalian cell lines. Western blotting demonstrated that 95 of the 101 tested GPCRs showed positive signals. A large number of the GPCRs were expressed at high levels suggesting receptor yields in the range of 1 mg/L or higher, suitable for structural biology applications. Specific binding assays on a selected number of GPCRs were carried out to compare the correlation between total and functional protein expression. Ligands and additives supplemented to the cell culture medium were evaluated for expression enhancement. Selected GPCRs were also expressed from mutant SFV vectors providing enhanced protein expression and reduced host cell toxicity in attempts to further improve receptor yields.  相似文献   

3.
4.

Background

The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures.

Results

Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies.

Conclusion

Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.  相似文献   

5.
The enzyme steroid sulfatase (STS) hydrolyses 3-beta-hydroxysteroid sulfates. The female-male STS activity ratio is 1.04-1.7:1 in several cell lines in adults and reaches 2:1 in prepubertal subjects. In fibroblasts, STS values in X-chromosome abnormalities show a partial positive correlation according to the number of X-chromosomes. X-linked ichthyosis (XLI) carriers, with only one copy of the STS gene, present lower STS levels than normal controls. This study analyzes the STS activity in leukocytes of 46,Xi(Xq); 45,X; XLI carriers and normal controls using 7-[3H]-dehydroepiandrosterone sulfate as substrate. X-monosomy (1.07 +/- 0.18 pmol/mg protein/h), Xq isochromosome (1.02 +/- 0.12 pmol/mg protein/h) and normal females (1.03 +/- 0.11 pmol/mg protein/h) had similar STS values (p > 0.05). XLI-carriers and males showed the lowest STS levels (0.34 +/- 0.04 pmol/mg protein/h, p < 0.001 and 0.82 +/- 0.14 pmol/mg protein/h, p < 0.05, respectively). Female-male STS activity ratio in leukocytes was 1.3:1. These data indicate that a complex mechanism regulates the STS expression depending on each type of cell line.  相似文献   

6.
Isolated hepatocytes of rat, rabbit and guinea pig were found to take up and degrade 125I-labelled asialoorosomucoid at different rates with the rank order: rabbit greater than rat greater than guinea pig. Measurement of 125I-asialoorosomucoid binding at 4 degrees C to these hepatocytes revealed that all these cells had two classes of receptors with a major difference occurring in the number of high-affinity binding sites. The average binding affinity constants (K) and receptor concentration (N) calculated from a least-square analysis of the Scatchard plots were K1 = 1.15.10(9) M-1, K2 = 0.93.10(7) M-1, N1 = 0.049 pmol/mg cell protein and N2 = 0.27 pmol/mg cell protein for the rat; K2 = 3.16.10(7) M-1, N1 = 0.027 pmol/mg cell protein and N2 = 0.13 pmol/mg cell protein for the guinea pig and K1 = 0.74.10(9) M-1, K2 = 3.85.10(7) M-1, N1 = 0.205 pmol/mg cell protein and N2 = 0.37 pmol/mg cell protein for the rabbit hepatocytes, respectively. Measurement of the total number of cellular receptors after solubilization with Triton X-100 also revealed the same receptor concentration rank order of rabbit (5.8 pmol/mg cell protein) greater than rat (0.55 pmol/mg cell protein) greater than guinea pig (0.18 pmol/mg cell protein). Intravenous injection of 125I-asialoorosomucoid into anesthetized animals of matched body weight also indicated that the rate of plasma clearance and the rate of appearance of the degraded product of the tracer were different among these species with the same rank order as that observed with isolated hepatocytes. Thus there is a fundamental difference in the number of asialoglycoprotein receptors both on the cell surface and inside hepatocytes of these mammalian species.  相似文献   

7.
We have developed a mammalian expression system suitable for the production of enzymatically biotinylated integral membrane proteins. The key feature of this system is the doxycycline (dox)-regulated co-expression of a secreted variant of Escherichia coli biotin ligase (BirA) and a target protein with a 13-residue biotin acceptor peptide (BioTag) appended to its extracellular domain. Here we describe the expression and functional analysis of three G-protein coupled receptors (GPCRs): protease-activated receptors (PARs) 1 and 2, and the platelet ADP receptor, P2Y(12). Clonal Chinese hamster ovary (CHO) Tet-On cell lines that express biotinylated GPCRs were rapidly isolated by fluorescence-activated cell sorting following streptavidin-FITC staining, thereby circumventing the need for manual colony picking. Analysis by Western blotting with streptavidin-HRP following endoglycosidase treatment revealed that all three GPCRs undergo N-linked glycosylation. The expression of biotinylated GPCRs on the cell surface was regulated by the concentration of dox in the medium, reaching a maximum at approximately 1 microg/mL dox. Similarly, the extent of GPCR biotinylation was dependent on biotin concentration, with maximum and complete biotinylation achieved upon supplementation with 50 microM biotin. Biotinylated PAR1 and PAR2 were readily and specifically cleaved on the surface of intact cells by their cognate proteases, and were capable of transducing extracellular stimuli, resulting in the downstream phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, P2Y(12) mediated agonist-induced ERK phosphorylation only when it was expressed at low levels on the cell surface, highlighting the utility of regulated expression for the production of functionally active GPCRs in mammalian cells.  相似文献   

8.
Cyclic AMP regulates multiple neuronal functions, including neurite outgrowth and axonal regeneration. GPR3, GPR6, and GPR12 make up a family of constitutively active G protein-coupled receptors (GPCRs) that share greater than 50% identity and 65% similarity at the amino acid level. They are highly expressed in the central nervous system, and their expression in various cell lines results in constitutive stimulation of cAMP production. When the constitutively active GPCRs were overexpressed in rat cerebellar granule neurons in culture, the transfected neurons exhibited significantly enhanced neurite outgrowth and overcame growth inhibition caused by myelin-associated glycoprotein. GPR12-mediated neurite outgrowth was the most prominent and was shown to depend on G(s) and cAMP-dependent protein kinase. Moreover, the GPR12-mediated rescue from myelin-associated glycoprotein inhibition was attributable to cAMP-dependent protein kinase-mediated inhibition of the small GTPase, RhoA. Among the three receptors, GPR3 was revealed to be enriched in the developing rat cerebellar granule neurons. When the endogenous GPR3 was knocked down, significant reduction of neurite growth was observed, which was reversed by expression of either GPR3 or GPR12. Taken together, our results indicate that expression of the constitutively active GPCRs up-regulates cAMP production in neurons, stimulates neurite outgrowth, and counteracts myelin inhibition. Further characterization of the GPCRs in developing and injured mammalian neurons should provide insights into how basal cAMP levels are regulated in neurons and could establish a firm scientific foundation for applying receptor biology to treatment of various neurological disorders.  相似文献   

9.
The alpha 2B -adrenergic receptor ( alpha 2B -AR), a member of the G protein-coupled receptor (GPCR) superfamily, was expressed at high levels from Semliki Forest virus (SFV) vectors in mammalian cells. Constructs were engineered by fusing enhanced green fluorescent protein (eGFP) and the SFV capsid to opposite ends of the alpha 2B -AR. The receptor fusions alpha 2B -AR-eGFP and CAP- alpha 2B -AR expressed in CHO-K1 cells generated alpha 2B values of 176 and 122pmol/mg of membrane protein, respectively, and showed similar ligand binding characteristics, alpha 2B -AR subtype-selectivity, and G protein activation as reported for stable expression in CHO-K1 cells. Cryo-electron microscopy and eGFP-based fluorescence indicated the same subcellular receptor distribution. SFV expression is well suited for studies on the pharmacology, biochemistry, and cell biology of GPCRs, and for large-scale recombinant protein production in mammalian suspension culture to generate sufficient receptor quantities for structural biology.  相似文献   

10.
The human neuronal Cys‐loop ligand‐gated ion channel superfamily of ion channels are important determinants of human behavior and the target of many drugs. It is essential for their structural characterization to achieve high‐level expression in a functional state. The aim of this work was to establish stable mammalian cell lines that enable high‐level heterologous production of pure receptors in a state that supports agonist‐induced allosteric conformational changes. In a tetracycline‐inducible stable human embryonic kidney cells (HEK293S) cell line, GABAA receptors containing α1 and β3 subunits could be expressed with specific activities of 29–34 pmol/mg corresponding to 140–170 pmol/plate, the highest expression level reported so far. Comparable figures for serotonin (5‐HT3A) receptors were 49–63 pmol/mg and 245–315 pmol/plate. The expression of 10 nmol of either receptor in suspension in a bioreactor required 0.3–3.0 L. Both receptor constructs had a FLAG epitope inserted at the N‐terminus and could be purified in one step after solubilization using ANTI‐FLAG affinity chromatography with yields of 30–40%. Purified receptors were functional. Binding of the agonist [3H]muscimol to the purified GABAAR was enhanced allosterically by the general anesthetic etomidate, and purified 5‐hydroxytryptamine‐3A receptor supported serotonin‐stimulated cation flux when reconstituted into lipid vesicles.  相似文献   

11.
12.
A previous study observed bell-shaped concentration-response isotherms for activation of Gαi3 G-protein subunits by high efficacy 5-HT1A receptor agonists in a Chinese hamster ovary (CHO) cell line expressing high levels of these receptors. This suggested that a signaling switch took place in that cell line (from Gαi3 to activation of other G-proteins) but it was unclear if such effects are observed for 5-HT1A receptors in other cellular environments.Here, using an antibody capture-based [35S]GTPγS binding assay for Gαi3 activation, we investigated whether efficacious 5-HT1A receptor agonists (5-HT, F13714, befiradol, NLX-101), prototypical agonists ((+) and (−)8-OH-DPAT), and partial agonist, antagonists, inverse agonists (pindolol, WAY100635, spiperone) produced similar effects on 5 cell lines expressing different levels of human 5-HT1A receptors.In membranes from cell lines (HeLa, C6-glia and CHO-low) expressing moderate receptor levels (between 1 and 4 pmol/mg of protein), 5-HT, F13714, befiradol and NLX-101 elicited classical sigmoid concentration-response isotherms. In contrast, in cell lines (CHO-high, HEK-293F) expressing high receptor levels (>9 pmol/mg) these agonists elicited bell-shaped concentration-response isotherms that peaked at nanomolar-range concentrations and then returned to baseline or below. Spiperone elicited inverse agonist inhibitory sigmoid isotherms in all membrane preparations while WAY100635 was mostly ‘silent’ for Gαi3 activation. The other compounds elicited diverse responses in the different cell lines suggesting that other factors, in addition to receptor expression levels, could be influencing Gαi3 activation.These data indicate that Gαi3 G-protein activation by 5-HT1A receptor ligands is highly dependent on receptor expression levels and on cellular background. Moreover, the induction of bell-shape concentration-response isotherms by 5-HT and other high-efficacy agonists is consistent with a switch in signaling to other G-protein-mediated signaling cascades, possibly elicited by receptor conformational changes.  相似文献   

13.
Antisera were raised in rabbits against synthetic peptides corresponding to sequences of the guanine nucleotide binding proteins Gi1, Gi2, Gi3 and Go. These and previously described antisera were used to identify different G-proteins in Western blots of human adipocyte plasma membranes and to quantify them using purified recombinant α subunits as standards. Go was shown to be absent or ⪡ 15 pmol/mg of protein. A band stained by a previously characterized Go antiserum is suggested to be due to nonspecific staining of Gi1. Gi1 and Gi2 were the major G-proteins. Gi1 was present at concentrations of 52 and 18 pmol/mg of protein in lean and obese subjects, respectively, and the concentration was negatively correlated with the body mass index. Gi2 concentrations averaged 64 pmol/mg of protein and there was no correlation to the body mass index. Gi3 levels were much lower (⪡ 13 pmol/mg of protein) and the presence of this protein could not be demonstrated with certainty. The concentrations of Gi1 and Gi2 are thus over two orders of magnitude higher than those of the receptors whose effects they mediate. The low concentration of Gi1 in adipocyte plasma membranes of obese subjects could in part explain the attenuated inhibitory responses of adenylate cyclase in isolated fat cells in obesity.  相似文献   

14.
15.
Three mammalian expression systems suitable for expressing recombinant receptors have been described. Each is suited to a different aspect of the study of receptors and their behaviour. IRES-based vectors are ideal for creating stable mammalian cell lines suitable for screening receptors using a signalling readout. Unlike traditional vectors they result in almost 100% of cell lines generated expressing a particular receptor, thus increasing the efficiency of cell line generation and increasing the chance of higher expression-level cell lines being generated. They may also be utilized to express more than one protein of interest, for example it is possible to co-express a particular receptor with a particular signalling protein or trafficking protein from a single RNA, thus ensuring that both are expressed simultaneously in the same cell. The ecdysone-inducible expression system is ideal for studying receptor signalling and behaviour. It is possible to alter receptor expression levels in an identical cellular background thus making it possible to study phenomena such as constitutive receptor activity in the absence of agonist. The SFV expression system is ideal for expressing receptors at high levels of a mammalian cell. It is thus a good system for purifying receptors for structural analysis and for providing material for binding assays. All of the expression systems described above have been demonstrated to express seven-transmembrane receptors with the expected pharmacological and functional profile.  相似文献   

16.
High-level expression of mammalian G-protein-coupled receptors (GPCRs) is a necessary step toward biophysical characterization and high-resolution structure determination. Even though many heterologous expression systems have been used to express mammalian GPCRs at high levels, many receptors are improperly trafficked or are inactive in these systems. En route to engineering a robust microbial host for GPCR expression, we have investigated the expression of 12 GPCRs in the yeast Saccharomyces cerevisiae, where all receptors are expressed at the mg/L scale. However, only the human adenosine A2a (hA2aR) receptor is active for ligand-binding and located primarily at the plasma membrane, whereas other tested GPCRs are mainly retained within the cell. Selective receptors associate with BiP, an ER-resident chaperone, and activated the unfolded protein response (UPR) pathway, which suggests that a pool of receptors may be folded incorrectly. Leader sequence cleavage of the expressed receptors was complete for the hA2aR, as expected, and partially cleaved for hA2bR, hCCR5R, and hD2LR. Ligand-binding assays conducted on the adenosine family (hA1R, hA2aR, hA2bR, and hA3R) of receptors show that hA2aR and hA2bR, the only adenosine receptors that demonstrate leader sequence processing, display activity. Taken together, these studies point to translocation as a critical limiting step in the production of active mammalian GPCRs in S. cerevisiae.  相似文献   

17.
In Escherichia coli and other cell-based expression systems, there are critical difficulties in synthesizing membrane proteins, such as the low protein expression levels and the formation of insoluble aggregates. However, structure determinations by X-ray crystallography require the purification of milligram quantities of membrane proteins. In this study, we tried to solve these problems by using cell-free protein expression with an E. coli S30 extract, with G protein coupled receptors (GPCRs) as the target integral membrane proteins. In this system, the thioredoxin-fusion vector induced high protein expression levels as compared with the non-fusion and hexa-histidine-tagged proteins. Two detergents, Brij35 and digitonin, effectively solubilized the produced GPCRs, with little or no effect on the protein yields. The synthesized proteins were detected by Coomassie brilliant blue staining within 1h of reaction initiation, and were easily reconstituted within phospholipid vesicles. Surprisingly, the unpurified, reconstituted thioredoxin-fused receptor proteins had functional activity, in that a specific affinity binding value of an antagonist was obtained for the receptor. This cell-free translation system (about 1mg/ml of reaction volume for 6-8 h) has biophysical and biochemical advantages for the synthesis of integral membrane proteins.  相似文献   

18.
An efficient method for Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. is described. Embryogenic cell suspension cultures derived from stem internode callus were transformed with Agrobacterium tumefaciens harbouring pCAMBIA 1301 plant expression vector. Transformed colonies were selected on medium supplemented with hygromycin (5 mg/l). Continuously growing transformed cell suspension cultures were initiated from these colonies. Expression of β-glucuronidase in the suspension cultures was analysed by RT-PCR and GUS histochemical staining. GUS specific activity in the transformed suspension cultures was quantified using a MUG-based fluorometric assay. Expression levels of up to 105,870 pmol 4-MU/min/mg of total protein were noted in the transformed suspension cultures and 67,248 pmol 4-MU/min/mg of total protein in the spent media. Stability of GUS expression over a period of 7 months was studied. Plantlets were regenerated from the transformed embryogenic cells. Stable insertion of T-DNA into the host genome was confirmed by Southern blot analysis. This is the first report showing stable high-level expression of a foreign protein using embryogenic cell suspension cultures in S. album. U. K. S. Shekhawat and T. R. Ganapathi contributed equally to this work.  相似文献   

19.
G protein-coupled receptors (GPCRs) represent the largest class of cell surface receptors and play crucial roles in many cellular and physiological processes. Functional production of recombinant GPCRs is one of the main bottlenecks to obtaining structural information. Here, we report the use of a novel bacterial expression system based on the photosynthetic bacterium Rhodobacter sphaeroides for the production of human recombinant GPCRs. The advantage of employing R. sphaeroides as a host lies in the fact that it provides much more membrane surface per cell compared to other typical expression hosts. The system was tailored to overexpress recombinant receptors under the control of the moderately strong and highly regulated superoperonic photosynthetic promoter pufQ. We tested this system for the expression of some class A GPCRs, namely, the human adenosine A2a receptor (A2aR), the human angiotensin AT1a receptor (AT1aR) and the human bradykinin B2 receptor (B2R). Several different constructs were examined and functional production of the recombinant receptors was achieved. The best-expressed receptor, AT1aR, was solubilized and affinity-purified. To the best of our knowledge, this is the first report of successful use of a bacterial host--R. sphaeroides--to produce functional recombinant GPCRs under the control of a photosynthetic gene promoter.  相似文献   

20.
High-level production of G protein-coupled receptors (GPCRs) is usually difficult to achieve in heterologous cell systems. The inherent hydrophobicity of these receptors could cause aggregation and possible cytotoxicity. Cell-free (CF) expression has become a highly promising tool for the fast and efficient production of integral membrane proteins. Here we reported the CF production of an olfactory receptor from Caenorhabditis elegans, odorant response abnormal protein 10 (ODR-10), a member of GPCRs, using the Escherichia coli extracts. Different expression vectors were investigated and 175 μg/ml total ODR-10 was achieved with pIVEX2.4c. To obtain soluble ODR-10, different detergents and liposome with varied concentrations were respectively added into the CF system. High-level expression of soluble ODR-10 (150 μg/ml) was attained with the addition of 1.5 % polyoxyethylene-(20)-cetyl-ether (Brij58) into the CF system. Furthermore, the yield of total ODR-10 was improved to 350 μg/ml by supplementing liposomes into the CF system, and the maximal concentration of the soluble receptor (102 μg/ml) was achieved in this liposome-assisted CF system. Both strategies produced ODR-10 efficiently by using CF system, and the direct reconstitution of the in vitro expressed receptor into liposomes will be preferred for its potential applications in many areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号