首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper concerns the study of the conformational transition of a new exopolysaccharide (YAS34) using experimental techniques such as optical rotation, conductimetric and microcalorimetric measurements as a function of temperature. The behaviors of this polysaccharide in the acid or sodium salt form are compared; a deacetylated sample is also prepared to demonstrate the role of substituents. For the native structure (never heated), a conformational transition is observed but the deacetylated polysaccharide exhibits no ordered conformation. Multidetection size exclusion chromatography (SEC) analyses and conductimetric experiments allowed to determine the nature of each conformation and the molecular dimensions. From these results, it is suggested that the native conformation is a double helix which by heating over T(m) (temperature corresponding to half conformational transition) dissociates into disordered single chains. In the acid and sodium salt forms, by cooling below T(m), an ordered conformation is restored. This conformation seems to be an intramolecular double helix 'hairpin-like turn' (called renatured conformation). Nevertheless an irreversible denaturation is obtained progressively in the sodium salt form when the time of heating over T(m) increases. The conformation of the deacetylated polysaccharide corresponds to that of a single flexible chain (disordered conformation). The conformational transition for the native conformation was studied also in relation to the polyelectrolytic character of the polysaccharide: stability as a function of salt nature and salt and polymer concentrations was investigated for the polymer initially in the sodium and acid forms.  相似文献   

2.
The conformation of kappa-carrageenan in solution was studied combining 1H and 13C NMR with molecular mechanics. The experimental conditions were chosen to characterize the disordered conformation of the polymer. Particular attention has been given to explore a wide range of experimental conditions as to the dependence on solvent (water and Me2SO), polymer concentration, temperature, pH, presence of a denaturing agent (guanidinium chloride), and of ions otherwise able to induce conformational order of the carrageenan chains, either in solution (I-) or in the gel state (Rb+). Two-dimensional NOE experiments were analyzed to obtain information on internuclear distances, and molecular mechanics provided the range of energetically accessible conformations. Two inter-residue topological constraints were clearly identified: their combination is rather restricting for the chain and suggests that the disordered conformation of kappa-carrageenan is characterized by an intrinsic stiffness with high values of persistent length and characteristic ratio. They also rule out any postulated interchain hydrogen bonds. In contrast, experiments on the temperature dependence of the chemical shift in Me2SO reveal the existence of two inter-residue intramolecular H-bonds which might contribute positively to the rigidity of the polymer chain. The overall picture emerging from the present results is that of a locally elongated 'loose single helix'.  相似文献   

3.
Adenovirus-associated virus (AAV)-specific RNA present in the cytoplasm of cells coinfected with a helper adenovirus was analyzed by sucrose gradient sedimentation and gel electrophoresis. In aqueous conditions both gels or gradients revealed three AAV RNA components corresponding to 30S, 27S, and 20S and having apparent molecular weights of 2.6 x 10(6), 1.75 x 10(6) to 1.8 x 10(6), and 0.9 x 10(6) to 1.0 x 10(6), respectively. In nonaqueous, denaturing solvents only the 20S AAV RNA species was observed. For this reason, and because they would be apparently significantly larger than a single AAV DNA strand, both the 30S and 27S species are believed to result from conformational or aggregation effects in the aqueous nondenaturing systems. It is concluded that only a single RNA molecule having a molecular weight of approximately 0.9 x 10(6) to 1.0 x 10(6) is synthesized by AAV.  相似文献   

4.
Previous studies have suggested that the Ca2+-saturated E140Q mutant of the C-terminal domain of calmodulin exhibits equilibrium exchange between "open" and "closed" conformations similar to those of the Ca2+-free and Ca2+-saturated states of wild-type calmodulin. The backbone dynamics of this mutant were studied using15N spin relaxation experiments at three different temperatures. Measurements at each temperature of the15N rate constants for longitudinal and transverse auto-relaxation, longitudinal and transverse cross-correlation relaxation, and the1H-15N cross-relaxation afforded unequivocal identification of conformational exchange processes on microsecond to millisecond time-scales, and characterization of fast fluctuations on picosecond to nanosecond time-scales using model-free approaches. The results show that essentially all residues of the protein are involved in conformational exchange. Generalized order parameters of the fast internal motions indicate that the conformational substates are well folded, and exclude the possibility that the exchange involves a significant population of unfolded or disordered species. The temperature dependence of the order parameters offers qualitative estimates of the contribution to the heat capacity from fast fluctuations of the protein backbone, revealing significant variation between the well-ordered secondary structure elements and the more flexible regions. The temperature dependence of the conformational exchange contributions to the transverse auto-relaxation rate constants directly demonstrates that the microscopic exchange rate constants are greater than 2.7x10(3)s-1at 291 K. The conformational exchange contributions correlate with the chemical shift differences between the Ca2+-free and Ca2+-saturated states of the wild-type protein, thereby substantiating that the conformational substates are similar to the open and closed states of wild-type calmodulin. Taking the wild-type chemical shifts to represent the conformational substates of the mutant and populations estimated previously, the microscopic exchange rate constants could be estimated as 2x10(4)to 3x10(4)s-1at 291 K for a subset of residues. The temperature depen dence of the exchange allows the characterization of apparent energy barriers of the conformational transition, with results suggesting a complex process that does not correspond to a single global transition between substates.  相似文献   

5.
We report the rheological behaviour of a succinoglycan polysaccharide in dilute and semi-dilute solutions as a function of temperature, ionic strength and the nature of counterion. We have examined the viscosity dependence as a function of molecular weight using samples obtained by ultrasonication. We have also prepared samples lacking succinate substitutes and compared their behaviour with that of the native polymer. In both cases, we observed that, after heating a polymer solution for the first time above the conformational transition temperature, a different ordered state was obtained on cooling. This state had a lower molecular weight and intrinsic viscosity but identical chemical structure and local properties. A role for the side chain in the stabilization of breaks in the backbone is suggested. Nevertheless, a unique curve is obtained for the specific viscosity as a function of the overlap parameter c[eta] for different polymer concentrations of both the native and heated forms. However, different curves are obtained for normal and succinate-free polymers, and the succinate-free polymer is characterized by a lower Huggins constant.  相似文献   

6.
K C Cho  J J Hopfield 《Biochemistry》1979,18(26):5826-5833
The molecular mechanism of hemoglobin cooperativity was studied kinetically by flash photolysis on mixed-state hemoglobins which consist of three ferrous carboxy subunits and one hybrid ferric subunit including fluoromet, azidomet, cyanatomet, and thiocyanatomet. The effects of conformational transitions on the hybrid subunit were detected by kinetic absorption spectroscopy after the CO was fully photodissociated from the binding sites by a large pulse of light from a tunable dye laser. The hemoglobin conformational transition rate was observed to depend on its state of ligation. At 22 degrees C, pH 7, and 0.1 M phosphate, the deoxy R yields T conformational change rate is 4 x 10(4)s-1. The rate decreases to 1.4 x 10(4)s-1 for singly ligated hemoglobin. The R yields T conformation change alters the energy separation between high- and low-spin states for azidomet, cyanatomet, and thiocyanatomet subunits by about 700, 300, and 300 cal/mol, respectively. There are two possible implications of this result: (1) the iron atom spin state is not the only major factor in the determination of its position with respect to the heme plane or (2) the change with conformation of the protein force exerted by the proximal histidine on the iron atom (for an iron to heme-plane displacement of less than 0.3 A) is less than 50% of that expected from simple models in which this motion is responsible for cooperativity.  相似文献   

7.
Chemical modification of hyaluronic acid by carbodiimides.   总被引:9,自引:0,他引:9  
Hyaluronic acid (HA) is a linear polysaccharide with repeating disaccharide units of glucuronic acid and N-acetylglucosamine and is found in the extracellular matrix of connective tissues. Reaction of high molecular weight sodium hyaluronate (NaHA, MW approximately 2 x 10(6] with EDC at pH 4.75, either in the presence or absence of a primary diamine, gave the N-acylurea and O-acylisourea as NaHA-carbodiimide adducts. None of the expected intermolecular coupling with the amine component was observed. On the basis of this new observation, this method for chemical modification of HA was used in conjunction with new synthetic carbodiimides to prepare HA derivatives bearing lipophilic, aromatic, cross-linked, and tethered functional groups. The degree of conversion to NaHA-acylurea products appears to depend upon both the characteristics of various carbodiimides and the conformational structure of NaHA.  相似文献   

8.
9.
A dissolution procedure of unreduced glutenin polymers of three wheat flour varieties (WRU 6981, Alisei 1, and Alisei 2) by sonication in the presence of SDS (sodium dodecyl sulphate), after the elimination of albumins, globulins, and gliadins, was achieved, and the molecular weight distribution of glutenin polymers obtained by this method was measured by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. A structural study by CD spectroscopy at different temperatures of WRU 6981 glutenin polymer and of 1Ax1 high-M(r) (relative molecular mass) glutenin subunit, which is the only high-M(r) subunit contained in WRU 6981 flour, was undertaken to understand if the information obtained from the single subunit were applicable to the total polymer. CD spectroscopy also has been employed to study the glutenin polymers obtained by Alisei 1 and Alisei 2 wheat flours; Alisei 1 biotype contained 1Bx7 and 1Dx2+1Dy12 high-M(r) subunits, whereas the Alisei 2 biotype contained only 1Bx7 and 1Dy12 subunits. A conformational study was undertaken by CD spectroscopy at different temperatures and in the presence of some chemical denaturant agents, such as urea and sodium dodecyl sulphate, in order to obtain information about their intrinsic stability and to verify if the 1Dx2 subunit presence determined a different structural behavior between Alisei 1 and Alisei 2 polymers. MALDI-TOF mass spectrometric experiments showed that the glutenin polymers molecular weights were in the mass range of 500000-5000000. CD spectra indicated that a single conformational state did not predominate in the temperature range studied but equilibrium between two distinct conformational states existed; moreover, all the changes induced by urea and by SDS followed a multistep transition process.  相似文献   

10.
Heparin depresses the second-order rate constant kass for the inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. For high and low molecular weight heparin the decrease in kass is 290-fold and 40-fold, respectively. This is due to a tight binding of the polymer to elastase: Kd = 3.3 nM or 89 nM for high or low molecular weight heparin respectively. In contrast heparin increases the rate of inhibition of elastase by mucus proteinase inhibitor. For low molecular weight heparin, there is a 27-fold increase in kass. This is due to a strong binding of the polymer to the inhibitor (Kd = 50 nM) which undergoes a conformational change.  相似文献   

11.
Amphiphilic polyphosphate graft copolymers with varied densities of cholesteryl esters and hydrophilic graft chains were prepared, and the solution properties of the graft copolymers were evaluated. Polyphosphates were synthesized as backbones by ring-opening polymerization of 2-isopropyl-2-oxo-1,3,2-dioxaphospholane (IPP), 2-(2-oxo-1,3,2-dioxaphosphoroyloxyethyl-2-bromoisobutyrate) (OPBB), and 2-choresteryl-2-oxo-1,3,2-dioxaphospholane (ChOP) using triisobutylaluminum as an initiator. Three types of polyphosphates (PIBr(x)Ch(y), x = number of OPBB units in a polymer; y = number of ChOP units in a polymer) such as PIBr4, PIBr6Ch1, and PIBr3Ch2 were obtained. The molecular weights of these polymers were 2.4 x 10(4), 2.4 x 10(4), and 2.6 x 10(4) g/mol, respectively. 2-Methacryloyloxyethyl phosphorylcholine (MPC) was grafted from the OPBB sites in PIBr(x)Ch(y) via atom transfer radical polymerization (ATRP) in EtOH. In each polymer system, the molecular weight of the graft polymer was linear with conversion. Furthermore, the polymer radical concentration remained constant during polymerization; that is, the molecular weights of the graft chains were easily controllable with polymerization time. The solution properties of amphiphilic PIBr(x)Ch(y)-g-PMPCs were investigated by the methods of surface tension measurement, light scattering, and fluorescence probe. The transition point (cmc) of the surface tension of the PIBr(x)Ch(y)-g-PMPCs aqueous solution decreased with an increase in the number of ChOP units in a graft polymer. Particularly, PIBr3Ch2-g-PMPC14.9K formed nanosized associates (R(h) = 7.5 nm) with 2.2 molecules above 0.1 wt %. v79 cells were used to evaluate the cytotoxicity of the graft polymers, but no cytotoxicity was observed. The graft polymers containing cholesteryl groups effectively enhanced the solubility of paclitaxel in an aqueous solution.  相似文献   

12.
Alkaline protease preparations with different ratio of molecular forms are isolated from cultural medium of thermophilic fungi Torula thermophila UzPT-1 by means of protein fractionation with (NJ/)2SO4 and gel filtration through Sephadex G-75. The enzyme preparations differ in their thermostability in water at 60 degrees C. High molecular weight oligomeric enzyme forms dissociate in water (at 2-4 degrees C) forming dimeric and monomeric forms. Disaggregation is accompanied by the change in the thermostability of the enzyme preparations. It is concluded that protease thermostability depends on the ratio of dimeric and monomeric forms of the preparation, and it is associated with the conformational state of the enzyme molecules, and it is associated with the conformational state of the enzyme molecules. Oligomeric forms do not dissociate in 1% sodium dodecylsulphate and in 6 M urea. Ca2+ produces dissociation of high molecular weight enzyme forms and the conformational transition into the thermostable state.  相似文献   

13.
A new low molecular weight calcium binding protein, designated 12-kDa CaBP, has been isolated from chicken gizzard using a phenyl-Sepharose affinity column followed by ion-exchange and gel filtration chromatographies. The isolated protein was homogeneous and has a molecular weight of 12,000 based on sodium dodecyl sulfate-gel electrophoresis. The amino acid composition of this protein is similar to but distinct from other known low molecular weight Ca2+ binding proteins. Ca2+ binding assays using Arsenazo III (Sigma) indicated that the protein binds 1 mol of Ca2+/mol of protein. The 12-kDa CaBP underwent a conformational change upon binding Ca2+, as revealed by uv difference spectroscopy and circular dichroism studies in the aromatic and far-ultraviolet range. Addition of Ca2+ to the 12-kDa CaBP labeled with 2-p-toluidinylnaphthalene-6-sulfonate (TNS) resulted in a sevenfold increase in fluorescence intensity, accompanied by a blue shift of the emission maximum from 463 to 445 nm. Hence, the probe in the presence of Ca2+ moves to a more nonpolar microenvironment. Like calmodulin and other related Ca2+ binding proteins, this protein also exposes a hydrophobic site upon binding calcium. Fluorescence titration with Ca2+ using TNS-labeled protein revealed the presence of a single high affinity calcium binding site (kd approximately 1 x 10(-6) M).  相似文献   

14.
Keeping equal the initial power drawn (0.27 W l(-1)) in shake flasks and in a stirred fermentor did not reproduce the behaviour of alginate production by Azotobacter vinelandii. A lower mean molecular weight (1.1x10(6) Da) of the polymer was obtained in the bioreactor as compared to that obtained in shake flasks (1.9x10(6) Da). The reasons for this can reside in the fact that the evolution of the power drawn in the shake flasks could be considerably different to that observed in the stirred bioreactor. A drastic drop in the specific power drawn is expected in the shake flasks as a consequence of the increased viscosity, which caused the liquid not following the movement of the shaker. This was supported by the fact that cultures developed in the fermentor at lower initial power drawn (as low as 0.027-0.056 W l(-1)) or in a culture in which the power drawn was deliberately reduced along cultivation, produced alginates with similar molecular characteristics as that obtained in shake flasks.  相似文献   

15.
Nerve growth factor (NGF) is the prototype of a family of neurotrophins that support important neuronal programs such as differentiation and survival of a subset of sympathetic, sensory, and brain neurons. NGF binds to two classes of cell surface receptors: p75LANR and p140TrkA. NGF binding to p140TrkA initiates the neuronal signaling pathway through activation of the tyrosine kinase activity, which subsequently results in a rapid signal transduction through a phosphorylation cascade. To examine this crucial signaling step in more detail, the TrkA extracellular domain polypeptide (TrkA-RED) was overexpressed in Sf21 insect cells and purified to homogeneity. The recombinant TrkA-RED is a 70 kDa acidic glycoprotein with a pI of 5.1, and mimics the intact TrkA receptor for NGF binding with a dissociation constant, Kd, of 2.9 nM. Thus, the recombinant TrkA-RED is functionally competent and can be used to elucidate the interaction of NGF and TrkA receptor. Circular dichroism difference spectra indicated that, upon association of NGF with TrkA-RED, a minor conformational change occurred to form a complex with decreased ordered secondary structure. Interaction between NGF and TrkA-RED was also demonstrated by size exclusion chromatography, light scattering, and chemical crosslinking with evidence for formation of a higher molecular weight complex consistent with a (TrkA-RED)2-(NGF dimer) complex. Association and dissociation rates of 5.6 x 10(5) M(-1) s(-1) and 1.6 x 10(-3) s(-1), respectively, were determined by biosensor technology. Thus, initiation of signaling may stem from NGF-induced receptor dimerization concomitant with a small conformational change.  相似文献   

16.
The effect of five culture variables on the molecular weight properties of hyaluronic acid (HA) produced by Streptococcus zooepidemicus was studied in batch culture with a complex medium containing glucose and 10 g of yeast extract per liter. Neither the culture pH (pH 6.3 to 8.0) nor the agitation speed (300 to 1,000 rpm) affected the weight-average molecular weight (M(infw)) of HA under anaerobic conditions at 37(deg)C when 20 g of glucose per liter was used initially. M(infw) was in the narrow range of 1.5 x 10(sup6) to 2.3 x 10(sup6), and polydispersity (P) was between 1.8 and 2.5. When S. zooepidemicus was grown at lower temperatures or with aeration, higher-molecular-weight polymer and increased yields were observed. The polydispersity, however, remained unaffected. Anaerobically, the mean M(infw) (based on three samples taken within 4 h of glucose exhaustion) was (2.40 (plusmn) 0.10) x 10(sup6) and (1.90 (plusmn) 0.05) x 10(sup6) at 32 and 40(deg)C respectively. Aeration of the culture at 1 vol/vol/min produced HA with mean M(infw) of (2.65 (plusmn) 0.05) x 10(sup6) compared with (2.10 (plusmn) 0.10) x 10(sup6) under equivalent anaerobic conditions. The initial glucose concentration had the most pronounced effect on polymer characteristics. Increasing this concentration from 20 to 40 g/liter produced HA with mean M(infw) of (3.1 (plusmn) 0.1) x 10(sup6) at 1-vol/vol/min aeration. The molecular weight of HA also exhibited time dependency, with smaller chains (M(infw), ca. 2.5 x 10(sup6)) detected early in the culture time course, rising to a maximum (M(infw), 3.2 x 10(sup6)) in the late exponential phase of growth. The mean polydispersity was also greater (2.7 (plusmn) 0.1) under these conditions. Replicate experiments performed under conditions resulting in the lowest (40(deg)C, anaerobic) and highest (40 g of glucose per liter, 1-vol/vol/min aeration)-M(infw) polymer demonstrated excellent experimental reproducibility.  相似文献   

17.
The electron transfer equilibrium and kinetics between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa have been studied. The equilibrium constant K = ([Cyt(III)] . [Az(I)])/([Cyt(II)] . [Az(II))]) = 0.5 at 25 degrees C is about seven times smaller than that observed between the cytochrome c551 and the titrations confirmed a 43-mV difference between the mid-point potentials of +266 mV and +309 mV for the Alcaligenes and Pseudomonas azurins respectively. The kinetics of the reaction between Alcaligenes azurin and Pseudomonas cytochrome c551 were investigated by the temperature-jump chemical relaxation method. Only a single relaxation mode was observed throughout the range of concentrations and temperatures examined. Thus, the slow relaxation time observed in the reaction between P. aeruginosa azurin and cytochrome c551 is not observed with the Alcaligenes azurin. The simplest mechanism that can therefore be ascribed to the investigated system is: [formula: see text]. This scheme is similar to that proposed earlier for the reaction between P. aeruginosa azurin and cytochrome c551 but does not involve the conformational transition proposed for azurin. The specific rates for the electron transfer are still fast: 1.8 x 10(6) M-1 . s-1 and 3.0 x 10(6) M-1 . s-1 respectively at 25 degrees C.  相似文献   

18.
The interaction of activated papain with low molecular weight cystatin (Mr 12500) purified from human placenta has been studied. Analysis of inhibition of caesinolytic activity of papain by cystatin showed stoichiometry of 1:1. Kinetic studies gave an inhibition constant (K(i)) value of 5.5 x 10(-8) M and association rate constant (K(+1)) value of 3.4 x 10(4) (M(-1) s(-1)). All spectroscopic studies showed conformational changes in both papain and cystatin on formation of complex. The data suggest perturbation of environment of aromatic residues and change of their native structure and conformation thereby shedding light on the behaviour of cystatins, especially interaction of placental cystatin with thiol protease inhibitors.  相似文献   

19.
Natively disordered proteins are a growing class of anomalies to the structure-function paradigm. The natively disordered protein alpha-synuclein is the primary component of Lewy bodies, the cellular hallmark of Parkinson's disease. We noticed a dramatic difference in dilute solution 1H-15N Heteronuclear Single Quantum Coherence (HSQC) spectra of wild-type alpha-synuclein and two disease-related mutants (A30P and A53T), with spectra collected at 35 degrees C showing fewer cross-peaks than spectra acquired at 10 degrees C. Here, we show the change to be the result of a reversible conformational exchange linked to an increase in hydrodynamic radius and secondary structure as the temperature is raised. Combined with analytical ultracentrifugation data showing alpha-synuclein to be monomeric at both temperatures, we conclude that the poor quality of the 1H-15N HSQC spectra obtained at 35 degrees C is due to conformational fluctuations that occur on the proton chemical shift time scale. Using a truncated variant of alpha-synuclein, we show the conformational exchange occurs in the first 100 amino acids of the protein. Our data illustrate a key difference between globular and natively disordered proteins. The properties of globular proteins change little with solution conditions until they denature cooperatively, but the properties of natively disordered proteins can vary dramatically with solution conditions.  相似文献   

20.
The extracellular carbohydrate-binding domain of the Type I transmembrane receptor CD44 is known to undergo affinity switching, where change in conformation leads to enhanced binding of its carbohydrate ligand hyaluronan. Separate x-ray crystallographic and NMR experiments have led to competing explanations, with the former supporting minor conformational changes at the binding site and the latter a major order-to-disorder unfolding transition distant from the binding site. Here, all-atom explicit-solvent molecular dynamics studies employing adaptive biasing force sampling revealed a substantial favorable free-energy change associated with contact formation between the Arg41 side chain and hyaluronan at the binding site, independent of whether the distant site was ordered or disordered. Analogous computational experiments on Arg41Ala mutants showed loss of this favorable free-energy change, consistent with existing experimental data. More provocatively, the simulation data revealed the molecular mechanism by which the order-to-disorder transition enhances hyaluronan binding: in the disordered state, a number of basic residues gain sufficient conformational freedom—lacking in the ordered state—to spontaneously form side-chain contacts with hyaluronan. Mutation of these residues to Ala had been known to decrease binding affinity, but there had previously been no structural explanation, given their lack of proximity to the carbohydrate-binding site in existing structures of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号