首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liao PC  Lieu CH 《Life sciences》2005,76(14):1623-1639
Induction of cell apoptosis and necrosis by paclitaxel was investigated in human leukemic U937 cells. To explore whether paclitaxel induces both apoptosis and necrosis in different cell cycle stages, we synchronized the cells in G1, S and G2/M stages by counterflow centrifugal elutriation (CCE). The Annexin V and PI analysis revealed that, after paclitaxel treatment, the cells in G1 and S stages died predominantly through apoptosis, whereas G2/M-stage cells died through both apoptosis and necrosis. These phenomena were verified by a trypan blue exclusion assay and by detection of the release of lactose dehydrogenase (LDH). Paclitaxel treatment significantly decreased viability in G2/M cells and led these cells to release more LDH than other cells. These treated cells also released certain substances that inhibited cell growth. These results strongly suggest that the cell membrane of the treated G2/M-cells is disrupted, leading to the leakage of LDH and cell growth inhibitory substances out of cell. Furthermore, the typical events of apoptosis, such as the release of cytochrome c and the decrease of mitochondria membrane potential, occur primarily in S stage rather than in the G2/M stages. These results suggest that paclitaxel induces typical apoptosis in the G1- and S- cells, but it induces both apoptosis and necrosis in G2/M-phase cells.  相似文献   

2.
3.
Incubation of the human promonocytic cell line U937 with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 72 h resulted in differentiation into immature macrophage-like cells and was accompanied by marked morphological and functional changes. U937 cells which normally grow in suspension and show a smooth surface, extended pseudopodia and became adherent to each other and to the surface of the culture vessel. Concomitant with the TPA-induced adherence U937 cells ceased to proliferate. Our results show that phorbol ester-treated U937 cells exhibited markedly increased levels of fibronectin and of the cytoskeletal proteins actin, myosin and vimentin including a reorganization of actin and vimentin filaments. The induction of both cellular adherence and growth inhibition were accompanied by a significantly reduced level of cells expressing transferrin receptors and changes in cell surface antigen expression. Here, the expression of the leukocytefunction antigens (LFA-1), including CD11 and CD18 was markedly enhanced during phorbol ester-induced differentiation. TPA-treatment, however, failed to enhance the small amount of U937 cells expressing the monocyte/macrophage-specific CD14 antigen or expressing MHC class-II antigens. A detailed analysis of the CD14 cluster by 7 differential antibodies resulted in an induction of TM1, UCHM1, MEM15, My4, and 3C10, whereas the epitopes recognized by TM2 and Mo2 remained unaltered. Neither indomethacin nor interferon-gamma were capable of inducing a marked expression of these antigen epitopes in TPA-treated cells. Although these data demonstrate that during phorbol ester-induced differentiation U937 cells acquire many properties typically associated with macrophages, the failure to express marked levels of macrophage-specific cell surface antigens suggests a transition of U937 cells from a promonocytic to an immature macrophage intermediate state rather than into mature macrophage-like cells.  相似文献   

4.
The effect of 1,4-bis-(4-(1H-benzo[d]imidazol-2-yl-phenyl)) piperazine (BIPP), a newly synthesized piperazine derivative, on U937 leukemia cell viability was investigated. We show that BIPP induces dose-responsive apoptotic cell death in U937 cells by intrinsic mechanisms of apoptosis. Maximum apoptotic effect of BIPP on U937 cells was observed at 12.8μM. BIPP-induced apoptosis was evident by characteristics such as altered annexin-V binding, caspase activation, loss of mitochondrial membrane potential (MMP) and cytochrome c release. BIPP also differentially activates initiator and effector caspases combined with the loss of MMP strongly suggesting that BIPP causes an intrinsic apoptosis in U937 leukemia cells. Due to our observations that BIPP induces leukemia cell death without significantly affecting normal cells, our data suggests that it may be a potential therapeutic agent for human myeloid leukemia.  相似文献   

5.
We have previously reported that ricin, a toxic lectin that inhibits protein synthesis induced apoptotic cell death. In this study, we have found that isolated ricin CM-B-chain, which has no effect on cellular protein synthesis, induced DNA fragmentation in U937 cells in a dose- and time-dependent manner, albeit it required a longer incubation time and higher concentration than those of holotoxin ricin. Z-Asp-CH2-DCB, a caspase family inhibitor and serine protease inhibitor, 3,4-dichloroisocoumarine (DCI) effectively inhibited the CM-B-chain-mediated DNA fragmentation as well as in ricin. Thus, like ricin, multiple proteases with different substrate specificity may also be involved in the CM-B-chain-mediated apoptotic pathway. Furthermore, BFA inhibited both ricin- and CM-B-chain-mediated DNA fragmentation, suggesting an intracellular vesicle transport system through the Golgi complex may be involved in the apoptotic induction by these proteins as a common feature. On the other hand, cycloheximide (CHA) strongly increased the CM-B-chain-mediated DNA fragmentation, but inhibited ricin-mediated DNA fragmentation. The opposite effects of CHA may reflect the difference in the apoptotic mechanism between ricin and CM-B-chain. In conclusion, our results suggest that ricin-B-chain can induce apoptosis through its lectin activity, but the underlying mechanism may be distinct from that of ricin in which the A-chain contributes profoundly to the apoptotic induction.  相似文献   

6.
Lee EO  Kwon BM  Song GY  Chae CH  Kim HM  Shim IS  Ahn KS  Kim SH 《Life sciences》2004,74(18):2313-2326
Heyneanol A, a tetramer of resveratrol, is isolated from the roots of Vitis amurensis by cytotoxicity based fractionation. In this study, the mechanism of apoptosis by heyneanol A was evaluated in human leukemic U937 cells. Heyneanol A (IC(50) = 6.6 microM at 24 h) exhibited stronger cytotoxic effect than resveratrol (IC(50) = 100 microM at 24 h) by 15-fold on human leukemic U937 cells by XTT assay. Apoptotic bodies were observed in U937 cells treated with 6 microM of heyneanol A by TUNEL assay. Heyneanol A effectively increased the portion of sub-G(1) DNA content in a time- and concentration-dependent manner by flow cytometric analysis. Heyneanol A also induced cytochrome c release from mitochondria into the cytosol and subsequent caspase activation involving caspase 9 and 3 to cleave PARP. However, it did not affect the expressions of Bax and Bcl-2 by western blotting. It was confirmed that the activation of caspase 8, 9 and 3 and the cleavage of PARP by heyneanol A were completely blocked by adding Z-VAD-FMK, a caspase inhibitor. These findings suggest that heyneanol A has anti-tumor activity, which may be mediated by apoptosis caused by cytochrome c release and caspase activation in human leukemic U937 cells.  相似文献   

7.
A previous study showing that ethanol (ETOH) blocked [3H]choline incorporation into phosphatidylcholine (PC) suggested an inhibition of PC biosynthesis in human leukemic monocyte-like U937 cells. The mechanism of the inhibitory action of ETOH was investigated. Cells were pulsed with [3H]choline for 30 min and chased in the presence or absence of ETOH for up to 6 h. PC biosynthesis was inhibited drastically within 1 h after exposure to ETOH which increased intracellular cAMP appreciably. After a 3-h treatment, ETOH significantly inhibited both choline kinase (CK) and the cytosolic CTP: cholinephosphate cytidylyltransferase (CT). The inactivated CT was no longer stimulated by exogenous phosphatidylglycerol (PG). There was no evidence for redistribution of CT activity between cytosol and microsomes. When cells were exposed to 8-Bromo-cAMP ranging from 100 to 300 μM, PC biosynthesis remained unaffected despite the drastically elevated cAMP. These results seem to suggest that the raised cAMP is not a prerequisite for the inhibition of PC biosynthesis in U937 cells. Following pretreatment with protein kinase inhibitors (H-89 and K-252a), PC biosynthesis was decreased significantly and the inhibitory effect of ETOH was potentiated. Taken together, our results suggest that the inhibition of PC biosynthesis and the inhibitory effect of ETOH are independent of the activation of cAMP-dependent protein kinase. Unlike protein kinase inhibitors, pretreatment with tyrosine kinase inhibitors (erbstatin, genistein and tyrphostin 25) resulted in differential effects on PC biosynthesis and on the inhibitory action of ETOH. Genistein stimulated PC biosynthesis by 30 per cent as well as partially preventing /reversing the ETOH action, while tyrphostin 25 produced a synergistic inhibition. The relevance of tyrosine phosphorylation/dephosphorylation to the regulation of PC biosynthesis and ETOH action remains to be established.  相似文献   

8.
Sanazole has been tested clinically as a hypoxic cell radiosensitizer. In this study, we determined whether sanazole enhances the radiation-induced apoptosis of human lymphoma U937 cells. Our results revealed that, compared with 10 mM sanazole or radiation alone, the combination of both resulted in a significant enhancement of apoptosis after 6 h, which was evaluated on the basis of DNA fragmentation, morphological changes, and phosphatidylserine externalization. Sanazole alone enhanced intracellular superoxide and hydrogen peroxide formation, which further increased when the cells were irradiated. Significant enhancement of Fas externalization, loss of mitochondrial membrane potential (MMP), and activation of caspase-3 and caspase-8 were observed after the combined treatment. Moreover, this combination could also enhance Bid activation, reduction of Hsp70 expression level and release of cytochrome c from the mitochondria to the cytosol. An immediate increase in the intracellular Ca2+ concentration ([Ca2+] i ) was observed after the combined treatment. These results suggest that the intracellular superoxide and peroxide generated by sanazole might be involved in the enhancement of radiation-induced apoptosis, and that these effects are associated with modulation of the Fas-mitochondria-caspase-dependent pathway, an increase in [Ca2+] i , and a decrease in the Hsp70 expression levels.  相似文献   

9.
Pulse treatment with cadmium chloride followed by recovery caused apoptosis in U937 human promonocytic cells. In addition, the treatment-induced PKCdelta translocation from cytosol to membrane fraction, which was already detected at 30 min of treatment; and also caused PKCdelta cleavage to give a 41-kDa fragment, which was detected at 3-6 h of recovery, concomitantly with the execution of apoptosis. All these effects were reduced by the PKCdelta-specific inhibitor rottlerin. By contrast, rottlerin did not prevent the cadmium-provoked stimulation of the stress response (as measured by HSP70 expression), nor inhibited the generation of apoptosis by heat-shock, which failed to cause PKCdelta translocation. Cadmium chloride rapidly induced p38(MAPK) activation, which was not affected by rottlerin. By contrast, the p38(MAPK) inhibitor SB203580 reduced PKCdelta translocation and cleavage, indicating that p38(MAPK) activation precedes and regulates PKCdelta activation. It is concluded that PKCdelta mediates apoptosis induction by cadmium ions via early membrane translocation, and also possibly through late kinase proteolytic cleavage and phosphorylation on tyrosine residues.  相似文献   

10.
Han YH  Xia L  Song LP  Zheng Y  Chen WL  Zhang L  Huang Y  Chen GQ  Wang LS 《Proteomics》2006,6(11):3262-3274
We reported recently that moderate hypoxia and hypoxia-mimetic agents could induce growth arrest and differentiation of leukemic cells via the mediation of hypoxia-inducible factor 1 alpha (HIF-1alpha), but the exact molecular mechanisms remain largely unknown. In this study, human acute promonocytic leukemic U937 cells were incubated under 2% O2 or in 50 microM of the hypoxia mimetic agent cobalt chloride (CoCl2) and normal oxygen for 24 h, and their protein expression profiles were compared by 2-DE coupled with MALDI-TOF/TOF MS/MS. We identified 62 and 16 proteins that were significantly deregulated by hypoxia and CoCl2 treatment, respectively. These proteins were mainly involved in metabolism, gene expression regulation, signal transduction, cell proliferation, differentiation and apoptosis. As an example, N-myc downstream regulated gene 1 (NDRG1), a putative differentiation-related gene, was up-regulated in both 2% O2- and CoCl2-treated U937 cells. Moreover, enforced HIF-1alpha expression also elevated NDRG1 mRNA and protein in U937 cells. These data will provide some clues for understanding mechanisms by which leukemic cells response to hypoxia.  相似文献   

11.
12.
P^53基因在U937细胞生长和分化过程中的调节作用   总被引:1,自引:0,他引:1  
The expression of p53 gene has been found to be regulated during the induction of differentiation of U937 leukemic cells into mature macrophages by recombinant human granulocyte- macrophage colony stimulating factors (rhGM-CSF) We showed here that the increased expression of p53 seemed to be necessary for the differentiation of U937 cells induced by rh-GM-CSF. The inhibition of p53 expression by a p53 antisense oligodeoxynucleotide lead to the significant decrease of formation of mature macrophages from U 937 cells in the presence of rhGM-CSF. By contrast, the p53 sense oligodeoxynucleotide had no any effect. Furthermore, we have analysed the growth of U937 cells in the presence or absence of rhGM-CSF. The results showed that rhGM-CSF dramatically inhibited the growth of U 937 cells in the cultures. At the same time, the antisense inhibition experiment demonstrated that the inhibition of p53 expression partially diminished the growth-inhibitory effect of rhGM-CSF on U 937 cells. These results suggested that the p53 was required for the initiation of rhGM-CSF-induced differentiation of U 937 cells on one hand, and the inhibition of cell growth on the other hand. Thus we deduce that the increased expression of p53 induced by rhGM-CSF may be a coupling event of switch of U 937 cells from growth into differentiation.  相似文献   

13.
Chemotherapeutics represent the main approach for the treatment of leukemia. However, the occurrence of adverse side effects and the complete lack of effectiveness in some cases make it necessary to develop new drugs. As part of our screening program to evaluate the potential chemotherapeutic effect of natural coumarins, we investigated the anti-leukemic activities of a series of six prenylated coumarins isolated from the stem bark of Toddalia asiatica (Rutaceae). Among these, 6-(3-methyl-2-butenyl)-5,7-dimethoxycoumarin (toddaculin) displayed the most potent cytotoxic and anti-proliferative effects in U-937 cells. To determine whether these effects resulted from induction of cell death or differentiation, we further evaluated the expression of several apoptosis and maturation markers. Interestingly, while toddaculin at 250 μM was able to induce apoptosis in U-937 cells, involving decreased phosphorylation levels of ERK and Akt, 50 μM toddaculin exerted differentiating effects, inducing both the capacity of U-937 cells to reduce NBT and the expression of differentiation markers CD88 and CD11b, but no change in p-Akt or p-ERK levels. Taken together, these findings indicate that toddaculin displays a dual effect as a cell differentiating agent and apoptosis inducer in U-937 cells, suggesting it may serve as a pharmacological prototype for the development of novel anti-leukemic agents.  相似文献   

14.
Leukemic cell lines, such as U937, THP-1, and HL60 cells, can differentiate into macrophages following exposure to various agents including 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro. It is well known that TPA enhances reactive oxygen species (ROS) generation through the activation of NADPH oxidase (NOX), and ROS act as mediators in TPA signaling. Extracellular-superoxide dismutase (EC-SOD) is a major anti-oxidative enzyme that protects the cells from damaging effects of superoxide. Recently, the reduction of Cu/Zn-SOD and the induction of Mn-SOD by TPA in leukemic cells have been reported; however, the regulation of EC-SOD by TPA remains poorly understood. Here, we explored the regulation of EC-SOD during the monocytic differentiation of U937 cells by TPA. We observed the reduction of EC-SOD and Cu/Zn-SOD, whereas the induction of Mn-SOD during the differentiation of U937 cells. The reduction of EC-SOD and Cu/Zn-SOD was attenuated by pretreatments with GF109203X (an inhibitor of protein kinase C, PKC), diphenyleneiodonium (an inhibitor of NOX), and U0126 (an inhibitor of mitogen-activated protein kinase kinase, MEK/extracellular-signal regulated kinase, ERK). Interestingly, pretreatment with BAY11-7082 (an inhibitor of nuclear factor-κB, NF-κB) suppressed the reduction of Cu/Zn-SOD, but not of EC-SOD. Furthermore, we also determined the involvement of newly synthesized protein and the instability of mRNA in the reduction of EC-SOD. Overall, our results suggest that the expression of EC-SOD is decreased by TPA through intracellular signaling consisting of PKC, NOX-derived ROS and MEK/ERK, but not of NF-κB signaling.  相似文献   

15.
Tumor necrosis factor-alpha (TNF-alpha) binds to TNF-alpha receptors (TNFR) to produce a hexameric (TNF-alpha)(3)-(TNFR)(3) structure that stimulates apoptosis. We found by using ELISA that TNF-alpha binds to the glycosylphosphatidylinositol (GPI) anchor glycans of carcinoembryonic antigen, human placental alkaline phosphatase (hAP), and Tamm-Horsfall glycoprotein. These binding abilities were inhibited by 10(-6)M mannose-6-phosphate. Treatment of hAP with mild acid and phosphatase, which releases the N-acetylglucosamine (GlcNAc) beta1 -->phosphate-->6 residue from the GPI-anchor glycan of hAP, abrogated the binding of TNF-alpha to hAP. Thus, TNF-alpha binds to the GlcNAcbeta1-->phosphate-->6Man residue in GPI-anchor glycans. To investigate whether the carbohydrate-binding ability of TNF-alpha is related to its physiological functions, human lymphoma U937 cells were used. TNF-alpha stimulates U937 cell apoptosis in a dose-dependent manner and the presence of mannose-6-phosphate inhibited this. TNF-alpha-dependent tyrosine phosphorylation of several proteins in U937 cells was also diminished by mannose-6-phosphate. Phosphatidylinositol-specific phospholipase C-pretreatment also inhibited this tyrosine phosphorylation. These data suggest that TNF-alpha stimulates U937 cell apoptosis by forming a high-affinity nanomeric (TNF-alpha)(3)-(TNFR)(3)-(GPI-anchored glycan)(3) complex. The GPI-anchored glycoprotein involved remains to be identified.  相似文献   

16.
A novel type of succinoyl trehalose lipid (STL-1) prepared from n-hexadecane-culture ofRhodococcus erythropolis SD-74 markedly inhibited the growth of a human monocytoid leukemic cell line, U937, and induced its morphological alteration along a monocyte-macrophage lineage. STL-1 markedly increased differentiation-associated characteristics in macrophage, such as nitroblue tetrazolium reducing ability, appearance of Fc receptor, phagocytic activities in U937. Furthermore, U937 cells, which were activated with STL-1 exhibited cytotoxic activity against human lung carcinoma cell line A549. However, STL-1 did not affect growth of a normal human fetal lung cell line TIG-1. The individual components of STL-1, neither sugar moiety nor fatty acids in the free form, were effective at inducing the differentiation of U937 cell. From these results, we concluded that STL-1 has low cytotoxicity against normal human cells and the ester molecule itself is responsible for the activity of inducing differentiation of human monocytoid leukemic cell line U937 into monocyte-macrophage which results in the stimulation of the production of some cytotoxic substances.  相似文献   

17.
Pulse treatment with cadmium chloride followed by recovery caused apoptosis in U937 human promonocytic cells. In addition, the treatment-induced PKCδ translocation from cytosol to membrane fraction, which was already detected at 30 min of treatment; and also caused PKCδ cleavage to give a 41-kDa fragment, which was detected at 3–6 h of recovery, concomitantly with the execution of apoptosis. All these effects were reduced by the PKCδ-specific inhibitor rottlerin. By contrast, rottlerin did not prevent the cadmium-provoked stimulation of the stress response (as measured by HSP70 expression), nor inhibited the generation of apoptosis by heat-shock, which failed to cause PKCδ translocation. Cadmium chloride rapidly induced p38MAPK activation, which was not affected by rottlerin. By contrast, the p38MAPK inhibitor SB203580 reduced PKCδ translocation and cleavage, indicating that p38MAPK activation precedes and regulates PKCδ activation. It is concluded that PKCδ mediates apoptosis induction by cadmium ions via early membrane translocation, and also possibly through late kinase proteolytic cleavage and phosphorylation on tyrosine residues.  相似文献   

18.
19.
Lee JH  Tak JK  Park KM  Park JW 《Biochimie》2007,89(12):1509-1516
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Recently, it has been shown that the decomposition product of the spin-trapping agent α-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics α-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the effects of NtBHA on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. NtBHA effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The generation of intracellular reactive oxygen species was higher and the GSH level was lower in control cells compared to NtBHA-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to NtBHA-treated cells. NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

20.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Therefore, compounds that scavenge reactive oxygen species may regulate heat shock-induced cell death. Recently, it has been shown that the decomposition product of the spin-trapping agent alpha-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics alpha-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the protective role of NtBHA against heat shock-induced apoptosis in U937 cells. Upon exposure to heat shock, there was a distinct difference between the untreated cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, and mitochondrial function. Upon exposure to heat shock, NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax, and down-regulation of Bcl-2 compared to untreated cells. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by heat shock, presumably through scavenging of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号