首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This paper considers public attitudes toward genetically modified plants in the fields or those soon to be planted. Analyzing a regional public opinion survey of 680 respondents in Arkansas, Texas, Louisiana, New Mexico, and Oklahoma carried out in the Spring—Summer of 2004, we look at the importance of public attitudes toward the three generations of agricultural biotechnology in light of the changing regulatory environment. Specifically, we ask questions concerning the first generation of plants with agronomic qualities, comparing our findings with previous studies, then look at perceptions of the second generation of crops with product quality characteristics, and the third generation, which expresses industrial products and pharmaceutical drugs. We look at perceived benefits, the likelihood, that these plants might accidentally enter the food supply, the likelihood that these plants might be eaten by the respondent, as well as how worried and angry the respondent would be as a result. Findings suggest that the public is still largely unaware of food biotechnology and genetically modified food products in their life. When compared with the first and second generation agricultural biotechnology products, survey respondents indicated that third generation products are not only likely to provide greater benefits, but are also potentially the source of more worry and anger if accidentally eaten.  相似文献   

2.
Pharmaceuticals and vaccines made by genetic engineering are well accepted all over the world. In contrast, there are many people, particularly in Europe, who are worried that food, made by the same new technology, may harm their health or cause damage to the environment. This is despite the growing evidence that genetically modified crops have the potential to improve world food security and the fact that there have, as yet, been no adverse results of their use in the food chain. Because of these worries and the mechanisms of politics, agricultural biotechnology has become the target of concerns about food safety (BSE, Foot & Mouth Disease), along with globalisation and the power of multinational companies. These concerns will, hopefully, be overcome by a more open and well-informed dialogue between scientists, opinion leaders, educators and the public. If judiciously applied, genetically modified crops will help increase sustainability and the fight against hunger in the world.  相似文献   

3.
The development of marker-free transgenic plants has responded to public concerns over the safety of biotechnology crops. It seems that continued work in this area will soon remove the question of unwanted marker genes from the debate concerning the public acceptability of transgenic crop plants. Selectable marker genes are co-introduced with genes of interest to identify those cells that have integrated the DNA into their genome. Despite the large number of different selection systems, marker genes that confer resistance to the antibiotics, hygromycin (hpt) and kanamycin (nptII) or herbicide phosphinothricin (bar), have been used in most transgenic research and crop development techniques. The techniques that remove marker gene are under development and will eventually facilitate more precise and subtle engineering of the plant genome, with widespread applications in both fundamental research and biotechnology. In addition to allaying public concerns, the absence of resistance genes in transgenic plants could reduce the costs of developing biotechnology crops and lessen the need for time-consuming safety evaluations, thereby speeding up the commercial production of biotechnology crops. Many research results and various techniques have been developed to produce marker-free transgenic plants. This review describes the strategies for eliminating selectable marker genes to generate marker-free transgenic plants, focusing on the three significant marker-free technologies, co-transformation, site-specific recombinase-mediated excision, and non-selected transformation.  相似文献   

4.
The very term ‘Biotechnology’ elicits a range of emotions, from wonder and awe to downright fear and hostility. This is especially true among non-scientists, particularly in respect of agricultural and food biotechnology. These emotions indicate just how poorly understood agricultural biotechnology is and the need for accurate, dispassionate information in the public sphere to allow a rational public debate on the actual, as opposed to the perceived, risks and benefits of agricultural biotechnology. This review considers first the current state of public knowledge on agricultural biotechnology, and then explores some of the popular misperceptions and logical inconsistencies in both Europe and North America. I then consider the problem of widespread scientific illiteracy, and the role of the popular media in instilling and perpetuating misperceptions. The impact of inappropriate efforts to provide ‘balance’ in a news story, and of belief systems and faith also impinges on public scientific illiteracy. Getting away from the abstract, we explore a more concrete example of the contrasting approach to agricultural biotechnology adoption between Europe and North America, in considering divergent approaches to enabling coexistence in farming practices. I then question who benefits from agricultural biotechnology. Is it only the big companies, or is it society at large – and the environment-also deriving some benefit? Finally, a crucial aspect in such a technologically complex issue, ordinary and intelligent non-scientifically trained consumers cannot be expected to learn the intricacies of the technology to enable a personal choice to support or reject biotechnology products. The only reasonable and pragmatic alternative is to place trust in someone to provide honest advice. But who, working in the public interest, is best suited to provide informed and accessible, but objective, advice to wary consumers?  相似文献   

5.
In Europe, public and scientific concerns about the environmental and food safety of GM (Genetically Modified) crops overshadow the potential benefits offered by crop biotechnology to improve food quality. One of the concerns regarding the use of GM food in human and animal nutrition is the effect that newly introduced sequences may have on the organism. In this paper, we assess the potential transfer of diet-derived DNA to animal tissues after consumption of GM plants. Blood, spleen, liver, kidney and muscle tissues from piglets fed for 35 days with diets containing either GM (MON810) or a conventional maize were investigated for the presence of plant DNA. Only fragments of specific maize genes (Zein, Sh-2) could be detected with different frequencies in all the examined tissues except muscle. A small fragment of the Cry1A(b) transgene was detected in blood, liver, spleen and kidney of the animals raised with the transgenic feed. The intact Cry1A(b) gene or its minimal functional unit were never detected. Statistical analysis of the results showed no difference in recovery of positives for the presence of plant DNA between animals raised with the transgenic feed and animals raised with the conventional feed, indicating that DNA transfer may occur independently from the source and the type of the gene. From the data obtained, we consider it unlikely that the occurrence of genetic transfer associated with GM plants is higher than that from conventional plants.  相似文献   

6.
7.
Opinion in Africa over the use of genetically modified crops for food has been divided, honed by more than a decade of arguments in Europe and elsewhere. Fortunately, the perceived image of a passive Africa in this game is changing rapidly with clear positions on how to harness modern biotechnology. This article examines the status of biosafety regulation across Africa, pertinent challenges and the extent to which regulation fosters or constrains the development of agricultural biotechnology.  相似文献   

8.
Without food, mankind has little use for medicine or industry. Agriculture, the oldest biotechnology, is therefore also the most fundamental to our well-being. The application of modern methods of biotechnology represents just the latest step in the march of technology in agriculture. But it coincides with a growing public awareness of the disadvantages that have accompanied previous progress — the environmental, economic and ethical problems that result from intensive farming in developed countries. There is a growing scientific awareness that biotechnology has applications in farming in the developing countries. In the next few pages, Allen Dines' snapshot of public feeling in the US and Joske Bunders' appraisal of appropriate agricultural biotechnology form a résumé of the changing climate in farming.  相似文献   

9.
Summary Over the past 20 years, DNA-based biotechnologies have been applied to agricultural production and many crops with new and useful attributes have been cultivated in various countries. The adoption of this new technology by farmers has been swift, and benefits in terms of increased production per unit land and environmental benefits are becoming obvious. In forestry, the application of biotechnology is somewhat lagging behind and to date there are no commercial plantations with genetically modified trees. However, most tree species used in plantation forestry have been genetically transformed, and results demonstrate the successful and correct expression of new genes in these plants. At the same time, this new technology is being viewed with concern, very similar to the concerns voiced over the use of genetic engineering in agriculture. This paper discusses some of the issues involved for world forestry, with particular focus on future demand for timber and timber products and how modern biotechnology can contribute to meet the growing demand. Tree genetic engineering techniques will be outlined, and results reviewed for a number of species. Concerns over the use of this new technology will be described and analyzed in relation to scientific considerations.  相似文献   

10.
Summary Bioengineering approaches provide unprecedented opportunities for reducing poverty, food insecurity, child malnutrition, and natural resource degradation. Genetic engineering offers outstanding potential to increase the efficiency of crop improvement. Thus agricultural biotechnology could enhance global food production and availability in a sustainable way. Small farmers in developing countries are faced with many problems and constraints which biotechnology may assist. Yet, there are varying levels of opposition to the use of this technology in most countries and it is especially intense in Europe. While there is certain public apprehension with the use of bioengineering in food improvement, the primary hurdles facing this technology are the stringent and burdensome regulatory requirements for commercialization, opposition from the special interest groups, apprehension by the food industry especially with the whole foods, and trade barriers including rigid policies on traceability and labeling. Bioengineered crops such as soybean, maize, cotton, and canola with a few traits have already made a remarkable impaet on food production and environmental quality. But, in the developing world, bioengineering of crops such as bananas, cassava, yams, sweet potatoes, sorghum, rice, maize, wheat, millet, and legumes, along with livestock, can elearly contribute to global food security. However, the integration of biotechnology into agricultural research in developing countries faces many challenges which must be addressed: financial, technical, political, environmental, activism, intellectual-property, biosafety, and trade-related issues. To ensure that developing countries can harness the benefit of this technology with minimal problems, concerted efforts must be pursued to create an awareness of its potential benefits and to address the concerns related to its use through dialog among the various stakeholders: policy makers, scientists, trade groups, food industry, consumer organizations, farmer groups, media, and non-governmental organizations. Biotechnology holds great promise as a new tool in the scientific toolkit for generating applied agricultural technologies; however, per se it is not a panacea for the worlds problems of hunger and poverty.  相似文献   

11.
The development and implementation of an effective national biosafety system is important for several key reasons: to ensure safe access to products of modern biotechnology, to build public confidence, to encourage the growth of domestic modern biotechnology, and to comply with international standards and agreements. There is no single best approach in the development and implementation of a national biosafety system and each country is faced with unique challenges. Slovenia is a small country and a new EU Member State. However, it has developed and implemented an efficient national biosafety system. The key elements of this system are administrative procedure, risk assessment, enforcement, and public participation and information.  相似文献   

12.
Genome editing of livestock is poised to become commercial reality, yet questions remain as to appropriate regulation, potential impact on the industry sector and public acceptability of products. This paper looks at how genome editing of livestock has attempted to learn some of the lessons from commercialisation of GM crops, and takes a systemic approach to explore some of the complexity and ambiguity in incorporating genome edited animals in a food production system. Current applications of genome editing are considered, viewed from the perspective of past technological applications. The question of what is genome editing, and can it be considered natural is examined. The implications of regulation on development of different sectors of livestock production systems are studied, with a particular focus on the veterinary sector. From an EU perspective, regulation of genome edited animals, although not necessarily the same as for GM crops, is advocated from a number of different perspectives. This paper aims to open up new avenues of research on genome edited animals, extending from the current primary focus on science and regulation, to engage with a wider-range of food system actors.  相似文献   

13.
One of the major concerns of the general public about transgenic crops relates to the mixing of genetic materials between species that cannot hybridize by natural means. To meet this concern, the two transformation concepts cisgenesis and intragenesis were developed as alternatives to transgenesis. Both concepts imply that plants must only be transformed with genetic material derived from the species itself or from closely related species capable of sexual hybridization. Furthermore, foreign sequences such as selection genes and vector‐backbone sequences should be absent. Intragenesis differs from cisgenesis by allowing use of new gene combinations created by in vitro rearrangements of functional genetic elements. Several surveys show higher public acceptance of intragenic/cisgenic crops compared to transgenic crops. Thus, although the intragenic and cisgenic concepts were introduced internationally only 9 and 7 years ago, several different traits in a variety of crops have currently been modified according to these concepts. Five of these crops are now in field trials and two have pending applications for deregulation. Currently, intragenic/cisgenic plants are regulated as transgenic plants worldwide. However, as the gene pool exploited by intragenesis and cisgenesis are identical to the gene pool available for conventional breeding, less comprehensive regulatory measures are expected. The regulation of intragenic/cisgenic crops is presently under evaluation in the EU and in the US regulators are considering if a subgroup of these crops should be exempted from regulation. It is accordingly possible that the intragenic/cisgenic route will be of major significance for future plant breeding.  相似文献   

14.
Plant transformation has had a deep impact on several aspects of basic and applied research. Genetic transformation has offered new opportunities compared to traditional breeding practises since it allows the integration into a host genome of specific sequences leading to a strong reduction of the casualness of gene transfer. One of the first target areas was plant protection against pests, pathogens and environmental stresses while the recent plant engineering programs are aimed at increasing food quality, in particular at increasing nutritional characteristics of food crops. Moreover, transgenic plants, tissue or cell cultures represent an attractive biological system for producing heterologous proteins since they offer economic and qualitative benefits. High yield production can be obtained and large-scale commercial production will take advantage of the existing infrastructure for crop cultivation, processing and storage. There are also qualitative benefits since protein synthesis secretion and post-translational modifications are similar in plants and animal cells. There are no human viral pathogens harboured by plants: thus, especially for pharmaceuticals, plants represent the safer production system. Plant transformation has become an essential instrument also for basic research, in particular for the functional characterisation of genes identified by sequencing of whole genomes. Large collections of insertion mutants have been obtained in the model plant Arabidopsis to provide a high level of genome saturation that means 95% chance of inactivating any gene at least once. To instil greater public confidence in modern plant biotechnology recent advances have already been made to overcome the potential risks for human health and environment.  相似文献   

15.
The benefits of genetic engineering of crop plants to improve the reliability and quality of the world food supply have been contrasted with public concerns raised about the food safety of the resulting products. Debates have concentrated on the possible unforeseen risks associated with the accumulation of new metabolites in crop plants that may contribute to toxins, allergens and genetic hazards in the human diet. This review examines the various molecular and biochemical mechanisms by which new hazards may appear in foods as a direct consequence of genetic engineering in crop plants. Such hazards may arise from the expression products of the inserted genes, secondary or pleiotropic effects of transgene expression, and random insertional mutagenic effects resulting from transgene integration into plant genomes. However, when traditional plant breeding is evaluated in the same context, these mechanisms are no different from those that have been widely accepted from the past use of new cultivars in agriculture. The risks associated with the introduction of new genes via genetic engineering must be considered alongside the common breeding practice of introgressing large fragments of chromatin from related wild species into crop cultivars. The large proportion of such introgressed DNA involves genes of unknown function linked to the trait of interest such as pest or disease resistance. In this context, the potential risks of introducing new food hazards from the applications of genetic engineering are no different from the risks that might be anticipated from genetic manipulation of crops via traditional breeding. In many respects, the precise manner in which genetic engineering can control the nature and expression of the transferred DNA offers greater confidence for producing the desired outcome compared with traditional breeding.  相似文献   

16.
Stewart CN  Richards HA  Halfhill MD 《BioTechniques》2000,29(4):832-6, 838-43
One usually thinks of plant biology as a non-controversial topic, but the concerns raised over the biosafety of genetically modified (GM) plants have reached disproportionate levels relative to the actual risks. While the technology of changing the genome of plants has been gradually refined and increasingly implemented, the commercialization of GM crops has exploded. Today's commercialized transgenic plants have been produced using Agrobacterium tumefaciens-mediated transformation or gene gun-mediated transformation. Recently, incremental improvements of biotechnologies, such as the use of green fluorescent protein (GFP) as a selectable marker, have been developed. Non-transformation genetic modification technologies such as chimeraplasty will be increasingly used to more precisely modify germplasm. In spite of the increasing knowledge about genetic modification of plants, concerns over ecological and food biosafety have escalated beyond scientific rationality. While several risks associated with GM crops and foods have been identified, the popular press, spurred by colorful protest groups, has left the general public with a sense of imminent danger. Reviewed here are the risks that are currently under research. Ecological biosafety research has identified potential risks associated with certain crop/transgene combinations, such as intra- and interspecific transgene flow, persistence and the consequences of transgenes in unintended hosts. Resistance management strategies for insect resistance transgenes and non-target effects of these genes have also been studied. Food biosafety research has focused on transgenic product toxicity and allergenicity. However, an estimated 3.5 x 10(12) transgenic plants have been grown in the U.S. in the past 12 years, with over two trillion being grown in 1999 and 2000 alone. These large numbers and the absence of any negative reports of compromised biosafety indicate that genetic modification by biotechnology poses no immediate or significant risks and that resulting food products from GM crops are as safe as foods from conventional varieties. We are increasingly convinced that scientists have a duty to conduct objective research and to effectively communicate the results--especially those pertaining to the relative risks and potential benefits--to scientists first and then to the public. All stakeholders in the technology need more effective dialogues to better understand risks and benefits of adopting or not adopting agricultural biotechnologies.  相似文献   

17.
本文回顾了近十余年来轻工、食品领域生物技术取得的重大成就,结合产业发展计划提出了今后研究和开发的重点。积极采用现代生物技术与食品加工技术相结合,加速改造传统工艺、开发具天然、营养、生理功能的新一代食品。  相似文献   

18.
The numerous food crises that Europe has experienced during the past five years have raised new consumer demands concerning the characterization, traceability, and safety of foods which are proposed on the market. The consumer has, at the same time, vigorously placed into question the modes of agricultural production in industrialized countries, as well as the structures and means of evaluating the food risks and the conditions of the consumer's participation in the public debate in these domains. For certain groups of consumers, one also attends a contestation of the expertise and the application to the food domain of the considerable progress that has taken place in the field of biotechnology. So it is that the development of genetically modified organisms (mainly plants, the raw material of food products) has experienced a slowing down in the European Union. The answers afforded to these new exigencies of consumers in matter of identity, traceability, and acceptability of the foods are dealt with in this paper, as well as the elements which may concur with the evaluation of their safety. The positive role that biotechnology can afford to the different domains is emphasized. A source of uneasiness, biotechnology is also a powerful tool for ameliorating the evaluation of the sanitary risks and for answering the hopes of the citizen in the food domain.  相似文献   

19.
Genetic improvement of crops has traditionally been achieved through sexual hybridization between related species, which has resulted in numerous cultivars with high yields and superior agronomic performance. Conventional plant breeding, sometimes combined with classical cytogenetic techniques, continues to be the main method of cereal crop improvement. More recently, through the introduction of new tools of biotechnology, crossing barriers have been overcome, and genes from unrelated sources have become available to be introduced asexually into plants. Cereal crops were initially difficult to genetically engineer, mainly due to their recalcitrance to in vitro regeneration and their resistance to Agrobacterium infection. Systematic screening of cultivars and explant tissues for regeneration potential, development of various DNA delivery methods and optimization of gene expression cassettes have produced transformation protocols for the major cereals, although some elite cultivars still remain recalcitrant to transformation. Most of the transgenic cereals developed for commercial purpose exhibit herbicide and/or insect resistance; traits that are often controlled by a single gene. In recent years, more complex traits, such as dough functionality in wheat and nutritional quality of rice have been improved by the use of biotechnology. The current challenges for genetic engineering of plants will be to understand and control factors causing transgene silencing, instability and rearrangement, which are often seen in transgenic plants and highly undesirable in lines to be used for crop development. Further improvement of current cereal cultivars is expected to benefit greatly from information emerging from the areas of genomics, proteomics and bioinformatics.  相似文献   

20.
The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号