首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Fas receptor delivers signals crucial for lymphocyte apoptosis through its cytoplasmic death domain. Several Fas cytoplasmic-associated proteins have been reported and studied in cell lines. So far, only Fas-associated death domain protein (FADD), another death domain-containing molecule has been shown to be essential for Fas signals in vivo. FADD is thought to function by recruiting caspase-8 through its death-effector domain. To test whether FADD is sufficient to deliver Fas signals, we generated transgenic mice expressing a chimera comprised of the Fas extracellular domain and FADD death-effector domain. Expression of this protein in lymphocytes of Fas-deficient MRL-lpr/lpr mice completely diminishes their T cell but not their B cell abnormalities. These results suggest that FADD alone is sufficient for initiation of Fas signaling in primary T cells, but other pathways may operate in B cells.  相似文献   

4.
Death domain-containing members of the tumor necrosis factor (TNF) receptor family ("death receptors") can induce apoptosis upon stimulation by their natural ligands or by agonistic antibodies. Activated death receptors recruit death domain adapter proteins like Fas-associated death domain protein (FADD), and this ultimately leads to proteolytic activation of the caspase cascade and cell death. Recently, FADD has also been implicated in the regulation of proliferation; functional inhibition of FADD results in p53-dependent impairment of proliferation in activated T-cells. In this study we have further analyzed T-cells derived from transgenic mice expressing a dominant negative FADD mutant (FADD DN) under control of the lck promoter in vitro so as to identify the signaling pathways that become engaged upon T-cell receptor stimulation and that are regulated by death receptors. FADD DN expression inhibits T-cell proliferation, both at the G(0) --> S transition and in the G(1) phase of continuously proliferating cells. We observe a decrease in the release of calcium from intracellular stores after T-cell receptor stimulation, whereas influx of extracellular calcium seems to be unaffected. FADD DN-expressing fibroblasts show a similarly inhibited cell growth and impaired calcium mobilization indicating that the modulation of proliferation and calcium response by death receptors is not cell type-specific.  相似文献   

5.
Matrix (M) protein mutants of vesicular stomatitis virus (VSV) are promising oncolytic agents for cancer therapy. Previous research has implicated Fas and PKR in apoptosis induced by other viruses. Here, we show that dominant-negative mutants of Fas and PKR inhibit M protein mutant virus-induced apoptosis. Most previous research has focused on the adapter protein FADD as a necessary transducer of Fas-mediated apoptosis. However, the expression of dominant-negative FADD had little effect on the induction of apoptosis by M protein mutant VSV. Instead, virus-induced apoptosis was inhibited by the expression of a dominant-negative mutant of the adapter protein Daxx. These data indicate that Daxx is more important than FADD for apoptosis induced by M protein mutant VSV. These results show that PKR- and Fas-mediated signaling play important roles in cell death during M protein mutant VSV infection and that Daxx has novel functions in the host response to virus infection by mediating virus-induced apoptosis.  相似文献   

6.
Sentrin is a ubiquitin-like protein that can covalently modify cellular proteins, and is a Fas binding protein that protects cells against anti-Fas induced cell death. However, the mechanism by which sentrin exerts its effect upon Fas-mediated apoptosis is not well known. Thus, this study examined the interaction of sentrin with Daxx. Sentrin interacted with Daxx but not with FADD when analyzed by yeast two-hybrid assay. In vitro translated Daxx bound to GST-sentrin fusion protein. FLAG-sentrin fusion protein was also coimmunoprecipitated with Daxx in BOSC23 cells. Also, Daxx interacted with Ubc9, an essential protein as a key conjugating enzyme. Amino acids 625-740 of Daxx, known as Fas binding region, was also mapped as sentrin and Ubc9 binding region. Colocalization of Fas, sentrin, and Ubc9 binding regions suggests the importance of that region upon the regulation of Daxx. Our data also demonstrated that sentrin could homooligomerize by protein-protein interaction.  相似文献   

7.
Trimerization of the Fas receptor (CD95, APO-1), a membrane bound protein, triggers cell death by apoptosis. The main death pathway activated by Fas receptor involves the adaptor protein FADD (for Fas-associated death domain) that connects Fas receptor to the caspase cascade. Anticancer drugs have been shown to enhance both Fas receptor and Fas ligand expression on tumor cells. The contribution of Fas ligand-Fas receptor interactions to the cytotoxic activity of these drugs remains controversial. Here, we show that neither the antagonistic anti-Fas antibody ZB4 nor the Fas-IgG molecule inhibit drug-induced apoptosis in three different cell lines. The expression of Fas ligand on the plasma membrane, which is identified in untreated U937 human leukemic cells but remains undetectable in untreated HT29 and HCT116 human colon cancer cell lines, is not modified by exposure to various cytotoxic agents. These drugs induce the clustering of Fas receptor, as observed by confocal laser scanning microscopy, and its interaction with FADD, as demonstrated by co-immunoprecipitation. Overexpression of FADD by stable transfection sensitizes tumor cells to drug-induced cell death and cytotoxicity, whereas down-regulation of FADD by transient transfection of an antisense construct decreases tumor cell sensitivity to drug-induced apoptosis. These results were confirmed by transient transfection of constructs encoding either a FADD dominant negative mutant or MC159 or E8 viral proteins that inhibit the FADD/caspase-8 pathway. These results suggest that drug-induced cell death involves the Fas/FADD pathway in a Fas ligand-independent fashion.  相似文献   

8.
Members of the tumour necrosis factor receptor family that contain a death domain have pleiotropic activities. They induce apoptosis via interaction with intracellular FADD/MORT1 and trigger cell growth or differentiation via TRADD and TRAF molecules. The impact of FADD/MORT1-transduced signals on T lymphocyte development was investigated in transgenic mice expressing a dominant negative mutant protein, FADD-DN. Unexpectedly, FADD-DN enhanced negative selection of self-reactive thymic lymphocytes and inhibited T cell activation by increasing apoptosis. Thus signalling through FADD/MORT1 does not lead exclusively to cell death, but under certain circumstances can promote cell survival and proliferation.  相似文献   

9.
In type 1 diabetes, many effector mechanisms damage the beta cell, a key one being perforin/granzyme B production by CD8(+) T cells. The death receptor pathway has also been implicated in beta cell death, and we have therefore generated NOD mice that express a dominant-negative form of the Fas-associated death domain protein (FADD) adaptor to block death receptor signaling in beta cells. Islets developed normally in these animals, indicating that FADD is not necessary for beta cell development as it is for vasculogenesis. beta cells from the transgenic mice were resistant to killing via the Fas pathway in vitro. In vivo, a reduced incidence of diabetes was found in mice with higher levels of dominant-negative FADD expression. This molecule also blocked signals from the IL-1R in culture, protecting isolated islets from the toxic effects of cytokines and also marginally reducing the levels of Fas up-regulation. These data support a role for death receptors in beta cell destruction in NOD mice, but blocking the perforin/granzyme pathway would also be necessary for dominant-negative FADD to have a beneficial clinical effect.  相似文献   

10.
The protein Daxx promotes Fas-mediated cell death through activation of apoptosis signal-regulating kinase 1, leading to the activation of the MAPKs JNK and p38. Owing to the in utero lethality of daxx-deficient mice, the in vivo role of Daxx has been so far difficult to analyze. We have generated transgenic mice expressing a dominant-negative form of Daxx (Daxx-DN) in the T-cell lineage. We show that Daxx is recruited to the Fas receptor upon FasL engagement and that Daxx-DN expression protects activated T cells from Fas-induced cell death, by preventing the death-inducing signal complex to be properly formed. Normal lymphocyte development and homeostasis are nevertheless observed. Interestingly, we report that both in vitro and in vivo stimulation of Daxx-DN T-lymphocytes leads to increased proliferative T-cell responses. This increased proliferation is associated with a marked increase in tyrosine phosphorylation of LAT and ZAP70 as Daxx-DN favor their recruitment to the T-cell receptor (TCR) complex. These findings identify Daxx as a critical regulator of T-lymphocyte homeostasis by decreasing TCR-induced cell proliferation and by promoting Fas-mediated cell death.  相似文献   

11.
FADD is a key adaptor modulating several signaling pathways such as apoptosis induced by Fas (CD95) and tumor necrosis factor receptor 1, and cell proliferation induced by mitogens. Whereas mutations in Fas disrupt its binding to FADD and cause autoimmune lymphoproliferative (lpr) syndromes, a FADD deficiency blocks embryonic development in mice. To delineate the multifunction of FADD in vivo, we performed functional reconstitution analysis by introducing wild type and mutant FADD into FADD-/- cells or FADD-/- mice lacking the endogenous FADD. An lpr-like FADD mutant, V121N, was reported previously as being defective in Fas binding in vitro. However, we found that in mice V121N can bind to Fas and is functional in signaling apoptosis. Unexpectedly, this lpr-like mutant FADD failed to support mouse development, indicating that the death domain of FADD has an additional function required for embryogenesis, which is independent of that required for receptor-induced apoptosis. Further mutagenesis was targeted at charged residues in the FADD death domain, presumably mediating electrostatic interactions with Fas. We showed that the target binding and apoptosis signaling functions of FADD were not affected when mutations were introduced to a majority of the charged residues. In one exception, replacing arginine 117 with an uncharged residue disrupted target binding and apoptosis signaling, but restoring the positive charge at position 117 failed to reconstitute the FADD function. Therefore, in vivo target binding of FADD involves an additional mechanism distinct from electrostatic interaction.  相似文献   

12.
Fas binding to Fas‐associated death domain (FADD) activates FADD–caspase‐8 binding to form death‐inducing signaling complex (DISC) that triggers apoptosis. The Fas–Fas association exists primarily as dimer in the Fas–FADD complex, and the Fas–FADD tetramer complexes have the tendency to form higher order oligomer. The importance of the oligomerized Fas–FADD complex in DISC formation has been confirmed. This study sought to provide structural insight for the roles of Fas death domain (Fas DD) binding to FADD and the oligomerization of Fas DD–FADD complex in activating FADD–procaspase‐8 binding. Results show Fas DD binding to FADD stabilized the FADD conformation, including the increased stability of the critical residues in FADD death effector domain (FADD DED) for FADD–procaspase‐8 binding. Fas DD binding to FADD resulted in the decreased degree of both correlated and anticorrelated motion of the residues in FADD and caused the reversed correlated motion between FADD DED and FADD death domain (FADD DD). The exposure of procaspase‐8 binding residues in FADD that allows FADD to interact with procaspase‐8 was observed with Fas DD binding to FADD. We also observed different degrees of conformational and motion changes of FADD in the Fas DD–FADD complex with different degrees of oligomerization. The increased conformational stability and the decreased degree of correlated motion of the residues in FADD in Fas DD–FADD tetramer complex were observed compared to those in Fas DD–FADD dimer complex. This study provides structural evidence for the roles of Fas DD binding to FADD and the oligomerization degree of Fas DD–FADD complex in DISC formation to signal apoptosis. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Fas‐associated death domain‐containing protein (FADD) is a classical apoptotic pathway adaptor. Further studies revealed that it also plays essential roles in nonapoptotic processes, which is assumed to be regulated by its phosphorylation. However, the exact mechanisms are still poorly understood. To study the nonapoptotic effects of FADD, a comprehensive strategy of proteomics identification combined with bioinformatic analysis was undertaken to identify proteins differentially expressed in three cell lines containing FADD and its mutant, FADD‐A and FADD‐D. The cell lines were thought to bear wild‐type FADD, unphosphorylated FADD mimic and constitutive phosphorylated FADD mimic, respectively. A total of 47 proteins were identified to be significantly changed due to FADD phosphorylation. Network analysis using MetaCoreTM identified a number of changed proteins that were involved in cellular metabolic process, including lipid metabolism, fatty acid metabolism, glycolysis, and oxidative phosphorylation. The finding that FADD‐D cell line showed an increase in fatty acid oxidation argues that it could contribute to the leaner phenotype of FADD‐D mice as reported previously. In addition, six proteins related to the ubiquitin‐proteasome pathway were also specifically overexpressed in FADD‐D cell line. Finally, the c‐Myc gene represents a convergent hub lying at the center of dysregulated pathways, and was upregulated in FADD‐D cells. Taken together, these studies allowed us to conclude that impaired mitochondrial function and proteolysis might play pivotal roles in the dysfunction associated with FADD phosphorylation‐induced disorders.  相似文献   

14.
Daxx silencing sensitizes cells to multiple apoptotic pathways   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

15.
16.
Reovirus infection is a well-characterized experimental system for the study of viral pathogenesis and antiviral immunity within the central nervous system (CNS). We have previously shown that c-Jun N-terminal kinase (JNK) and the Fas death receptor each play a role in neuronal apoptosis occurring in reovirus-infected brains. Death-associated protein 6 (Daxx) is a cellular protein that mechanistically links Fas signaling to JNK signaling in several models of apoptosis. In the present study, we demonstrate that Daxx is upregulated in reovirus-infected brain tissue through a type I interferon-mediated mechanism. Daxx upregulation is limited to brain regions that undergo reovirus-induced apoptosis and occurs in the cytoplasm and nucleus of neurons. Cytoplasmic Daxx is present in Fas-expressing cells during reovirus encephalitis, suggesting a role for Daxx in Fas-mediated apoptosis following reovirus infection. Further, in vitro expression of a dominant negative form of Daxx (DN-Daxx), which binds to Fas but which does not transmit downstream signaling, inhibits apoptosis of reovirus-infected cells. In contrast, in vitro depletion of Daxx results in increased expression of caspase 3 and apoptosis, suggesting that Daxx plays an antiapoptotic role in the nucleus. Overall, these data imply a regulatory role for Daxx in reovirus-induced apoptosis, depending on its location in the nucleus or cytoplasm.  相似文献   

17.
Death-associated protein (DAP)-kinase is a calcium/calmodulin regulated serine/threonine kinase that carries ankyrin repeats, a death domain, and is localized to the cytoskeleton. Here, we report that this kinase is involved in tumor necrosis factor (TNF)-alpha and Fas-induced apoptosis. Expression of DAP-kinase antisense RNA protected cells from killing by anti-Fas/APO-1 agonistic antibodies. Deletion of the death domain abrogated the apoptotic functions of the kinase, thus, documenting for the first time the importance of this protein domain. Overexpression of a fragment encompassing the death domain of DAP-kinase acted as a specific dominant negative mutant that protected cells from TNF-alpha, Fas, and FADD/MORT1-induced cell death. DAP-kinase apoptotic function was blocked by bcl-2 as well as by crmA and p35 inhibitors of caspases, but not by the dominant negative mutants of FADD/MORT1 or of caspase 8. Thus, it functions downstream to the receptor complex and upstream to other caspases. The multidomain structure of this serine/threonine kinase, combined with its involvement in cell death induced by several different triggers, place DAP-kinase at one of the central molecular pathways leading to apoptosis.  相似文献   

18.
Fas/Fas ligand system triggers apoptosis in many cell types. Bcl‐XL overexpresion antagonizes Fas/Fas ligand‐mediated cell death. The mechanism by which Bcl-XL influences Fas‐mediated cell death is unclear. We have found that microtubule‐damaging drugs (e.g. Paclitaxel) induce apoptosis in a Fas/FasL‐dependent manner. Inhibition of Fas/FasL pathway by anti‐FasL antibody, mutant Fas or a dominant negative FADD blocks paclitaxel‐induced apoptosis. Paclitaxel induced apoptosis through activation of both caspase‐8 and caspase‐3. Overexpression of Bcl‐XL leads to inhibition of paclitaxel‐induced FasL expression and apoptosis. Bcl‐XL prevents the nuclear translocation of NFAT (nuclear factor of activated T lymphocytes) by inhibiting the activation of calcineurin, a calcium‐dependent phosphatase that must dephosphorylate NFAT for it to move to the nucleus. The loop domain in Bcl‐XL can suppress the anti‐apoptotic function of Bcl‐XL and may be a target for regulatory post‐translational modifications. Upon phosphorylation, Bcl‐XL loses its ability to bind with calcineurin. Without NFAT nuclear translocation, the FasL gene is not transcribed. Thus, paclitaxel and other drugs that disturb microtubule function kill cells, at least in part, through the induction of FasL, and Bcl‐XL‐mediated resistance to these agents is related to failure to induce FasL expression.  相似文献   

19.
20.
The role of Daxx, in particular, its ability to promote or hinder apoptosis, still remains controversial. In order to elucidate the functional relevance of Daxx in apoptosis signaling of malignant lymphocytes, Jurkat T-cells were stably transfected with a Daxx-expressing vector or with the respective Daxx-negative control vector. We thus demonstrate that ectopic expression of Daxx substantially increases the rate of apoptosis upon incubation with death receptor agonists such as Fas and TRAIL as well as upon incubation with the cytotoxic drug doxorubicin (DOX). Analysis of the molecular changes induced in the extrinsic and intrinsic apoptosis pathways reveals that augmentation of apoptosis by Daxx overexpression is conveyed by distinctly different mechanisms. Although enforced apoptosis caused by ectopic Daxx expression is caspase-dependent in both cases, major differences between Fas/TRAIL-induced apoptosis and doxorubicin-induced apoptosis are observed in expression patterns of X-linked inhibitor of apoptosis (XIAP), p53, Bid, ZIP kinase, and prostate apoptosis response gene 4 (Par-4). Moreover, we could show that addition of a CD95 blocking antibody to the clones treated with doxorubicin was able to increase apoptosis as compared to doxorubicin treatment alone and was accompanied by an enhancement of the mitochondrial branch of apoptosis. In conclusion, we here outline the major molecular mechanisms underlying the apoptosis-promoting effect of Daxx in neoplastic lymphocytes and demonstrate fundamental molecular differences elicited by the overexpression of Daxx in the extrinsic and intrinsic signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号