首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Postsynaptic density protein‐95 (PSD‐95) localizes AMPA‐type glutamate receptors (AMPARs) to postsynaptic sites of glutamatergic synapses. Its postsynaptic displacement is necessary for loss of AMPARs during homeostatic scaling down of synapses. Here, we demonstrate that upon Ca2+ influx, Ca2+/calmodulin (Ca2+/CaM) binding to the N‐terminus of PSD‐95 mediates postsynaptic loss of PSD‐95 and AMPARs during homeostatic scaling down. Our NMR structural analysis identified E17 within the PSD‐95 N‐terminus as important for binding to Ca2+/CaM by interacting with R126 on CaM. Mutating E17 to R prevented homeostatic scaling down in primary hippocampal neurons, which is rescued via charge inversion by ectopic expression of CaMR126E, as determined by analysis of miniature excitatory postsynaptic currents. Accordingly, increased binding of Ca2+/CaM to PSD‐95 induced by a chronic increase in Ca2+ influx is a critical molecular event in homeostatic downscaling of glutamatergic synaptic transmission.  相似文献   

2.
Postsynaptic density protein‐95 (PSD‐95) is a central element of the postsynaptic architecture of glutamatergic synapses. PSD‐95 mediates postsynaptic localization of AMPA receptors and NMDA receptors and plays an important role in synaptic plasticity. PSD‐95 is released from postsynaptic membranes in response to Ca2+ influx via NMDA receptors. Here, we show that Ca2+/calmodulin (CaM) binds at the N‐terminus of PSD‐95. Our NMR structure reveals that both lobes of CaM collapse onto a helical structure of PSD‐95 formed at its N‐terminus (residues 1–16). This N‐terminal capping of PSD‐95 by CaM blocks palmitoylation of C3 and C5, which is required for postsynaptic PSD‐95 targeting and the binding of CDKL5, a kinase important for synapse stability. CaM forms extensive hydrophobic contacts with Y12 of PSD‐95. The PSD‐95 mutant Y12E strongly impairs binding to CaM and Ca2+‐induced release of PSD‐95 from the postsynaptic membrane in dendritic spines. Our data indicate that CaM binding to PSD‐95 serves to block palmitoylation of PSD‐95, which in turn promotes Ca2+‐induced dissociation of PSD‐95 from the postsynaptic membrane.  相似文献   

3.
The PSD-95 family of membrane- associated guanylate kinases (MAGUKs) are thought to act as molecular scaffolds that regulate the assembly and function of the multiprotein signaling complex found at the postsynaptic density of excitatory synapses. Genetic analysis of PSD-95 family members in the mammalian nervous system has so far been difficult, but the zebrafish is emerging as an ideal vertebrate system for studying the role of particular genes in the developing and mature nervous system. Here we describe the cloning of the zebrafish orthologs of PSD-95, PSD-93, and two isoforms of SAP-97. Using in situ hybridization analysis we show that these zebrafish MAGUKs have overlapping but distinct patterns of expression in the developing nervous system and craniofacial skeleton. Using a pan-MAGUK antibody we show that MAGUK proteins localize to neurons within the developing hindbrain, cerebellum, visual and olfactory systems, and to skin epithelial cells. In the olfactory and visual systems MAGUK proteins are expressed strongly in synaptic regions, and the onset of expression in these areas coincides with periods of synapse formation. These data are consistent with the idea that PSD-95 family members are involved in synapse assembly and function, and provide a platform for future functional studies in vivo in a highly tractable model organism.  相似文献   

4.
N‐Methyl‐D‐aspartate (NMDA) receptors are key components in synaptic communication and are highly relevant in central nervous disorders, where they trigger excessive calcium entry into the neuronal cells causing harmful overproduction of nitric oxide by the neuronal nitric oxide synthase (nNOS) protein. Remarkably, NMDA receptor activation is aided by a second protein, postsynaptic density of 95 kDa (PSD95), forming the ternary protein complex NMDA/PSD95/nNOS. To minimize the potential side effects derived from blocking this ternary complex or either of its protein components, a promising approach points to the disruption of the PSD‐95/nNOS interaction which is mediated by a PDZ/PDZ domain complex. Since the rational development of molecules targeting such protein‐protein interaction relies on energetic and structural information herein, we include a thermodynamic and structural analysis of the PSD95‐PDZ2/nNOS‐PDZ. Two energetically relevant events are structurally linked to a “two‐faced” or two areas of recognition between both domains. First, the assembly of a four‐stranded antiparallel β‐sheet between the β hairpins of nNOS and of PSD95‐PDZ2, mainly enthalpic in nature, contributes 80% to the affinity. Second, binding is entropically reinforced by the hydrophobic interaction between side chains of the same nNOS β‐hairpin with the side chains of α2‐helix at the binding site of PSD95‐PDZ2, contributing the remaining 20% of the total affinity. These results suggest strategies for the future rational design of molecules able to disrupt this complex and constitute the first exhaustive thermodynamic analysis of a PDZ/PDZ interaction.  相似文献   

5.
Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKζ is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD‐95. Overexpression of DGKζ in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD‐95 binding. Conversely, DGKζ knockdown reduces spine density. Mice deficient in DGKζ expression show reduced spine density and excitatory synaptic transmission. Time‐lapse imaging indicates that DGKζ is required for spine maintenance but not formation. We propose that PSD‐95 targets DGKζ to synaptic DAG‐producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.  相似文献   

6.
《Developmental neurobiology》2017,77(10):1161-1174
The formation and stabilization of new dendritic spines is a key component of the experience‐dependent neural circuit plasticity that supports learning, but the molecular maturation of nascent spines remains largely unexplored. The PSD95‐family of membrane‐associated guanylate kinases (PSD‐MAGUKs), most notably PSD95, has a demonstrated role in promoting spine stability. However, nascent spines contain low levels of PSD95, suggesting that other members of the PSD‐MAGUK family might act to stabilize nascent spines in the early stages of spiny synapse formation. Here, we used GFP‐fusion constructs to quantitatively define the molecular composition of new spines, focusing on the PSD‐MAGUK family. We found that PSD95 levels in new spines were as low as those previously associated with rapid subsequent spine elimination, and new spines did not achieve mature levels of PSD95 until between 12 and 20 h following new spine identification. Surprisingly, we found that the PSD‐MAGUKs PSD93, SAP97, and SAP102 were also substantially less enriched in new spines. However, they accumulated in new spines more quickly than PSD95: SAP102 enriched to mature levels within 3 h, SAP97 and PSD93 enriched gradually over the course of 6 h. Intriguingly, when we restricted our analysis to only those new spines that persisted, SAP97 was the only PSD‐MAGUK already present at mature levels in persistent new spines when first identified. Our findings uncover a key structural difference between nascent and mature spines, and suggest a mechanism for the stabilization of nascent spines through the sequential arrival of PSD‐MAGUKs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1161–1174, 2017  相似文献   

7.
The molecular complexity of mammalian proteomes demands new methods for mapping the organization of multiprotein complexes. Here, we combine mouse genetics and proteomics to characterize synapse protein complexes and interaction networks. New tandem affinity purification (TAP) tags were fused to the carboxyl terminus of PSD‐95 using gene targeting in mice. Homozygous mice showed no detectable abnormalities in PSD‐95 expression, subcellular localization or synaptic electrophysiological function. Analysis of multiprotein complexes purified under native conditions by mass spectrometry defined known and new interactors: 118 proteins comprising crucial functional components of synapses, including glutamate receptors, K+ channels, scaffolding and signaling proteins, were recovered. Network clustering of protein interactions generated five connected clusters, with two clusters containing all the major ionotropic glutamate receptors and one cluster with voltage‐dependent K+ channels. Annotation of clusters with human disease associations revealed that multiple disorders map to the network, with a significant correlation of schizophrenia within the glutamate receptor clusters. This targeted TAP tagging strategy is generally applicable to mammalian proteomics and systems biology approaches to disease.  相似文献   

8.
9.
Sensitization to inflammatory pain is a pathological form of neuronal plasticity that is poorly understood and treated. Here we examine the role of the SH3 domain of postsynaptic density 95 (PSD95) by using mice that carry a single amino‐acid substitution in the polyproline‐binding site. Testing multiple forms of plasticity we found sensitization to inflammation was specifically attenuated. The inflammatory response required recruitment of phosphatidylinositol‐3‐kinase‐C2α to the SH3‐binding site of PSD95. In wild‐type mice, wortmannin or peptide competition attenuated the sensitization. These results show that different types of behavioural plasticity are mediated by specific domains of PSD95 and suggest novel therapeutic avenues for reducing inflammatory pain.  相似文献   

10.
NMDA receptors are a subclass of ionotropic glutamate receptors. They are trafficked and/or clustered at synapses by the post-synaptic density (PSD)-95 membrane associated guanylate kinase (MAGUK) family of scaffolding proteins that associate with NMDA receptor NR2 subunits via their C-terminal glutamate serine (aspartate/glutamate) valine motifs. We have carried out a systematic study investigating in a heterologous expression system, the association of the four major NMDA receptor subtypes with the PSD-95 family of MAGUK proteins, chapsyn-110, PSD-95, synapse associated protein (SAP) 97 and SAP102. We report that although each PSD-95 MAGUK was shown to co-immunoprecipitate with NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptor subtypes, they elicited differential effects with regard to the enhancement of total NR2 subunit expression which then results in an increased cell surface expression of NMDA receptor subtypes. PSD-95 and chapsyn-110 enhanced NR2A and NR2B total expression which resulted in increased NR1/NR2A and NR1/NR2B receptor cell surface expression whereas SAP97 and SAP102 had no effect on total or cell surface expression of these subtypes. PSD-95, chapsyn-110, SAP97 and SAP102 had no effect on either total NR2C and NR2D subunit expression or cell surface NR1/NR2C and NR1/NR2D expression. A comparison of PSD-95α, PSD-95β and PSD-95αC3S,C5S showed that PSD-95-enhanced cell surface expression of NR1/NR2A receptors was dependent upon the PSD-95 N-terminal C3,C5 cysteines. These observations support differential interaction of NMDA receptor subtypes with different PSD-95 MAGUK scaffolding proteins. This has implications for the stabilisation, turnover and compartmentalisation of NMDA receptor subtypes in neurones during development and in the mature brain.  相似文献   

11.
Postsynaptic density-95 (PSD-95/SAP-90) is a palmitoylated peripheral membrane protein that scaffolds ion channels at excitatory synapses. To elucidate mechanisms for postsynaptic ion channel clustering, we analyzed the cellular trafficking of PSD-95. We find that PSD-95 transiently associates with a perinuclear membranous compartment and traffics with vesiculotubular structures, which migrate in a microtubule-dependent manner. Trafficking of PSD-95 with these vesiculotubular structures requires dual palmitoylation, which is specified by five consecutive hydrophobic residues at the NH(2) terminus. Mutations that disrupt dual palmitoylation of PSD-95 block both ion channel clustering by PSD-95 and its synaptic targeting. Replacing the palmitoylated NH(2) terminus of PSD-95 with alternative palmitoylation motifs at either the NH(2) or COOH termini restores ion channel clustering also induces postsynaptic targeting, respectively. In brain, we find that PSD-95 occurs not only at PSDs but also in association with intracellular smooth tubular structures in dendrites and spines. These data imply that PSD-95 is an itinerant vesicular protein; initial targeting of PSD-95 to an intracellular membrane compartment may participate in postsynaptic ion channel clustering by PSD-95.  相似文献   

12.
We have analyzed the functional role of neuronal calcium sensor‐1 (Ncs‐1) in zebrafish development. We identified two orthologs of the mammalian NCS‐1 gene. Full‐length cDNAs encoding zebrafish Ncs‐1a and Ncs‐1b polypeptides were cloned and characterized. Whole‐mount in situ hybridization revealed that ncs‐1a mRNA was expressed beginning at early somitogenesis. As development progressed, ncs‐1a mRNA was present throughout the embryo with expression detected in ventral hematopoietic mesoderm, pronephric tubules, CNS nuclei, and otic vesicle. By 4.5 days post fertilization (dpf), ncs‐1a expression was detected primarily in the brain. Expression of ncs‐1b mRNA was first detected at 36 hours post fertilization (hpf) and was restricted to the olfactory bulb. By 4.5 dpf, ncs‐1b was expressed at low levels throughout the brain. Knockdown of ncs‐1a mRNA translation with antisense morpholinos blocked formation of semicircular canals. These studies identify a novel function for ncs‐1a in inner ear development and suggest that this calcium sensor plays an important role in vestibular function. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

13.
14.
Notch receptors are a family of cell‐surface proteins that regulate cell fate decisions and growth control. Human NOTCH1 gain‐of‐function mutations–deletions have been found in c. 60% of patients with T‐cell acute lymphoblastic leukaemia (T‐ALL). Therefore, understanding the molecular mechanisms by which dysregulated Notch‐signalling induces leukaemia is of importance and may reveal novel targets for the development of more effective therapies. Zebrafish, Danio rerio, is an ideal model system to use for forward genetic screens to uncover pathways critical for transformation. Danio rerio also have the capacity for small molecule screening for drug discovery. rag2‐ICN1‐EGFP transgenic fish have been created that develop a T‐cell leukaemia, and these fish are now being used in genetic modifier screens.  相似文献   

15.
CRISPR/Cas9‐based strategies are widely used for genome editing in many organisms, including zebrafish. Although most applications consist in introducing double strand break (DSB)‐induced mutations, it is also possible to use CRISPR/Cas9 to enhance homology directed repair (HDR) at a chosen genomic location to create knock‐ins with optimally controlled precision. Here, we describe the use of CRISPR/Cas9‐targeted DSB followed by HDR to generate zebrafish transgenic lines where exogenous coding sequences are added in the nefma gene, in frame with the endogenous coding sequence. The resulting knock‐in embryos express the added gene (fluorescent reporter or KalTA4 transactivator) specifically in the populations of neurons that express nefma, making them convenient tools for research on these populations.  相似文献   

16.
The ubiquitous NF‐Y gene regulates the expression of different genes in various signaling pathways. However, the function of NF‐Y in zebrafish heart development is largely unknown. Previously we identified a same group of cell cycle related gene cluster (CCRG) was downregulated in the embryonic hearts with impeded growth due to various stresses. The promoter regions of these CCRG genes shared a most common motif for NF‐Y. Chromatin immunoprecipitation experiment demonstrated that the binding of NF‐Y to its motif was real on the CCRG candidate gene promoters. Knockdown of embryonic NF‐Y by morpholinos led to a small heart, mimicking the abnormal heart phenotype caused by other stresses. In parallel the expression of certain CCRG candidate genes was reduced in the NF‐Y A morphant hearts exposed to malignant environments. Absence of NF‐Y A also led to undermine cardiomyocyte proliferation and hence less total number of caridomyocytes per heart. Trans‐AM Elisa experiment also found that in the presence of the stresses such as TCDD and TNNT2 MO, the binding capacity of NF‐Y A subunit to its core motif was reduced. We conclude that NF‐Y sustains proper cardiomyocyte proliferation in the heart, thus it plays a positive role in promoting early zebrafish heart growth.  相似文献   

17.
Claudins serve essential roles in regulating paracellular permeability properties within occluding junctions. Recent studies have begun to elucidate developmental roles of claudins within immature tissues. This work has uncovered an involvement of several claudins in determining tight junction properties that have an effect on embryonic morphogenesis and physiology. During zebrafish brain morphogenesis, Claudin‐5a determines the paracellular permeability of tight junctions within a transient neuroepithelial‐ventricular barrier that maintains the hydrostatic fluid pressure required for brain ventricular lumen expansion. However, the roles of Claudins in development may well extend beyond being mere junctional components. Several post‐translational modifications of Claudins have been characterized that indicate a direct regulation by developmental signals. This review focuses on the involvement of Claudin‐5a in cerebral barrier formation in the zebrafish embryo and includes some speculations about possible modes of regulation.  相似文献   

18.
Given the ever-increasing toxic exposure ubiquitously present in our environment as well as emerging evidence that these exposures are hazardous to human health, the current rodent-based regulations are proving inadequate. In the process of overhauling risk assessment methodology, a nonrodent test organism, the zebrafish, is emerging as tractable for medium- and high-throughput assessments, which may help to accelerate the restructuring of standards. Zebrafish have high developmental similarity to mammals in most aspects of embryo development, including early embryonic processes, and on cardiovascular, somite, muscular, skeletal, and neuronal systems. Here, we briefly describe the development of these systems and then chronicle the toxic impacts assessed following chemical exposure. We also compare the available data in zebrafish toxicity assays with two databases containing mammalian toxicity data. Finally, we identify gaps in our collective knowledge that are ripe for future studies.  相似文献   

19.
Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S‐transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi‐1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3‐month‐old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione‐conjugating activity toward 1‐chloro‐2,4‐dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH‐dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号