首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Ethylene has been shown to induce carrot tissues to synthesize 8-hydroxy-6-methoxy-3-methyl-3,4-dihydroisocoumarin and 5-hydroxy-7-methoxy-2-methylchromone or eugenin. Our present data showed that the induction of isocoumarin formation could also be obtained by treating carrot slices with dinitrophenol and methylene blue. Methylene blue enhanced ethylene production, but dinitrophenol did not, therefore the action of the latter could not be mediated by ethylene. Arsenite inhibited isocoumarin synthesis, indicating the involvement of the glycolysis pathway. Assays on the pattern of derivation of isocoumarin from glucose lent support to the idea that isocoumarin is formed predominantly through the Embden-Meyerhof-Parnas pathway. Dinitrophenol-induced enhancement of both respiratory activity and isocoumarin formation indicates that the operation of the Krebs cycle and subsequently of the electron transport chain oxidations is required to provide acetate, the precursor of isocourmarin, as well as the energy necessary for the synthesizing process. The long initial lag phase as well as the mode of inhibition by cycloheximide seem to indicate that the ethylene-induced synthesis of isocoumarin is a sequential process.  相似文献   

2.
In this study, we investigated the influence of initial sucrose concentration on the accumulation of biomass, phenols, flavonoids, chlorogenic acid, and hypericin in adventitious root cultures of Hypericum perforatum L. Cultures were initiated in shake flasks by using half-strength Murashige and Skoog (MS) medium, 1.0 mg l−1 indolebutyric acid (IBA), 0.1 m g l−1 kinetin, and different concentrations 0, 1, 3, 5, 7, or 9% in w/v) of sucrose and were maintained in darkness. The medium supplemented with 3% (w/v) sucrose resulted in the optimum biomass accumulation, but higher sucrose concentrations (5, 7, and 9%) inhibited biomass accumulation due to the relatively higher osmotic pressure. However, the amount of total phenols, flavonoids, chlorogenic acid, and total hypericin was increased with the roots grown in the medium supplemented with 5, 7, and 9% (w/v) sucrose. The antioxidant potential of methanolic extract [1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid; ABTS) radical scavenging activities] of H. perforatum adventitious roots was also assessed and correlated with the metabolite accumulation. Cultures maintained with higher initial sucrose concentration (5, 7, and 9% w/v) showed increased accumulation of phenols, flavonoids, chlorogenic acid, and total hypericin, and this might be due to the osmotic stress at elevated sucrose concentrations. To verify the effect of osmotic stress on lipid peroxidation, the levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and proline were determined in the adventitious roots and the results revealed a marked increase in the concentrations of these compounds. These results suggest that optimal adventitious root biomass could be achieved in the MS medium with 3% (w/v) sucrose and increased sucrose concentration resulted in osmotic stress and, in turn, induces the accumulation of secondary metabolites.  相似文献   

3.
In peaches, fruit flesh browns unattractively after peeling or cutting. A recently developed cultivar, Okayama PEH7, was distinct from other Japanese cultivars, including Okayama PEH8, with respect to its reduced browning potential. Homogenate prepared from Okayama PEH7 flesh had significantly less reddening during the browning reaction. Okayama PEH7 had less soluble phenolic compounds and higher polyphenol oxidase activity than Okayama PEH8. Reduced browning was observed even when phenols prepared from Okayama PEH7 were incubated with crude extract from Okayama PEH8, suggesting that phenols lower the browning potential of Okayama PEH7. In Okayama PEH7, contents of chlorogenic acid and its isomers were about one-tenth compared to Okayama PEH8. Exogenous addition of chlorogenic acid to Okayama PEH7 homogenate increased the browning potential and visibly enhanced reddening. These results indicate that the reduced browning of Okayama PEH7 flesh is due to a defect in chlorogenic acid accumulation.  相似文献   

4.
During banana ripening there is a massive conversion into sugars, mainly sucrose, which can account for more than 10% of the fresh weight of the fruit. An ethylene burst is the trigger of the banana ripening process but there is evidence that other compounds can act as modulators of some biochemical pathways. As previously demonstrated, gibberellic acid (GA3) can impair the onset of starch degradation and affect some degradative enzymes, but effects on the sucrose biosynthetic apparatus have not yet been elucidated. Here, the activity and amount of sucrose synthase (SuSy; E.C. 2.4.1.13) and sucrose–phosphate synthase (SPS; E.C. 2.4.1.14), respiration rates, ethylene production, and carbohydrate levels, were evaluated in GA3-infiltrated and non-infiltrated banana slices. The exogenous supply of gibberellin did not alter the respiration or the ethylene profile but delayed sucrose accumulation by at least 2 days. While SuSy activity was similar in control and treated slices, SPS increase and sucrose accumulation was related in treated slices. Western blotting with specific antiserum showed no apparent effects of GA3 on the amount of SuSy protein, but impaired the increase in SPS protein during ripening. The overall results indicate that although GA3 did not block carbohydrate mobilisation in a irreversibly way, it clearly affected the triggering of starch breakdown and sucrose synthesis. Also, the delayed sucrose accumulation in GA3-infiltrated slices could be explained by the disturbance of SPS activity. In conclusion, gibberellins can play an important role during banana ripening and our results also reinforce the idea of multiple regulatory components in the ripening pathway, as evidenced by the GA3 effects.  相似文献   

5.
Treatment of etiolated A vena coleoptile apices with several concentrations of DL-p-fluorophenylalanine, previously reported to stimulate coleoptile elongation, caused marked reductions in chlorogenic acid content. Levels of this analogue which had no growth effect caused no detectable alteration of chlorogenic acid accumulation. Evidence is presented which indicates that chlorogenic acid levels may reflect extractable L-phenylalanine ammonia-lyase activity in this tissue. Incubation of coleoptiles with 5 mm DL-p-fluorophenylalanine resulted in significantly lowered extractable ammonia-lyase activity compared to controls. Similar treatment of tissues with the ortho isomer also caused a reduction of enzyme activity but to a lesser extent. Treatment with the meta isomer had no effect on extractable enzyme activity. These findings provide further evidence for the hypothesis that DL-p-fluorophenylalanine stimulates coleoptile elongation by lowering L-phenylalanine ammonia-lyase activity and the subsequent biosynthesis of potentially inhibitory low molecular weight phenols.  相似文献   

6.
Eucommia ulmoides Oliver is a traditional medicinal plant of China, and it is one of the main sources of chlorogenic acid. Chlorogenic acid is an ester of caffeic acid, quinic acid, and a phenolic compound that has antibacterial, antifungal, antioxidant, and antitumor activities. The purpose of this study was to determine whether endophytic fungi isolated from Eucommia ulmoides Oliver had the same ability to produce chlorogenic acid. Primary screening was done by antibacterial and antifungal reactions, and the strain reselection was done with high-performance liquid chromatography (HPLC) to identify the fermentation products of the selected strains. Extracts of the leaf and cortex of Eucommia ulmoides Oliver were also deteted by HPLC, then positive results of HPLC were analyzed by GC-MS and LC-MS. In this study, 29 strains were isolated from Eucommia ulmoides Oliver. Most of them had antibacterial activity, and a few of them had antifungal activity. One ingredient of the B5 extract had a retention time identical to that of authentic chlorogenic acid. With GC-MS, other ingredients, isocoumarin and p-chlorocinnamide, were found. With LC-MS, chlorogenic acid and geniposide related to Eucommia ulmoides Oliver were found. The strain B5 was identified as Sordariomycete sp. Thus, endophytic fungi may produce the bioactive compound chlorogenic acid, as their host plant does, and could be used for the production of chlorogenic acid by fermentation in the future.  相似文献   

7.
Tissue slices of zucchini squash (Cucurbita pepo L., cv. Tigress) fruit were exposed to ultraviolet-C (UV-C) radiation from germicidal lamps for 1, 10 or 20 min; however, only 10 and 20 min UV-C exposure significantly reduced microbial activity and deterioration during subsequent storage at 5 or 10 degrees C. UV-C treated slices had higher respiration rates than controls; however, the ethylene production of the slices was not affected by UV-C treatments. Slight UV-C irradiation damage (reddish brown discoloration) was detected on the surface of 10 and 20 min-treated slices after 12 days of storage at 10 degrees C. Slices stored at 5 degrees C did not show UV-C damage. Chilling injury was not observed until after 20 days of storage at 5 degrees C. The symptoms of chilling injury appeared as dried sunken brown spots on the surface of cortex tissue. UV-C treatments did not affect the degree of chilling injury during storage at 5 degrees C. UV-C treatment also had no consistent effect on sugar or malic acid concentrations. The most pronounced effect of UV-C irradiation was to retard microbial growth thereby providing a basis for the frequently observed delay in senescence and subsequent deterioration in fruit tissues.  相似文献   

8.
Abstract

CHANGES IN THE ACTIVITY OF CHLOROGENIC ACID OXIDASE AND OTHER ENZYMES INVOLVED IN OXIDATION AND REDUCTION OF TPN IN AGEING POTATO TUBER SLICES. — The activation of respiration, and in particular of the pentose phosphate pathway, during incubation of potato tuber slices could depend on the increase of activity of oxidative enzymes mediating electron transfer from Gl. 6-P to oxygen.

The present report deals with the activity changes, in the first period of incubation, of the following enzymes: Gl. 6-P-dehydrogenase, TPNH-glutathione reductase, gluta-thione-dehydroascorbate reductase, chlorogenic acid oxidase and a TPNH diaphorase utilizing tetrazolium salts as electron acceptors.

The activity of all of these enzymes, with the exception of TPNH diaphorase, was found to bs, at all stages of incubation, in large excess respect that required to account for the estimated contribution of the pentose phosphate pathway to respiration.

Gl. 6-P dehydrogenase, glutathione reductase and chlorogenic oxidase activities markedly incresed during incubation; but their increase appeared to be clearly delayed (of some hours) respect that of oxygen uptake. This seems to indicate that the increase in activity of these anzymes is rather a consequence than a cause of the respiratory activation.

TPNH diaphorase showed a very low activity in the fresh slices, and it increased quite significantly already in the very first period (5 hours) of incubation. This behaviour suggests the possibility that this enzyme could limit TPNH oxidation, and thus the pentose phosphate pathway activity, and that its activation could be correlated with that of oxidative metabolism in the ageing slices. Further investigation of this hypothesis requires the identification of the natural electron acceptor of this enzyme.  相似文献   

9.
Cyanide-resistant O(2) consumption can be stimulated by either treating whole white potato tubers (Norchip) with ethylene, in the presence of 100% O(2), or aging slices obtained from untreated potato tubers. A comparison of alternative pathway activity elicited by either treatment was undertaken. The proportion of electrons flowing through the alternative path in the presence of intermediate concentrations of KCN and at various concentrations of salicylhydroxamic acid was identical in both cases. However, the respiration of slices from ethylene-treated tubers was in every case stimulated by KCN, whereas the aged slices never exhibited this phenomenon. Furthermore, the metabolism of d-[U-(14)C]glucose was several hundred times greater in aged slices than in fresh slices from C(2)H(4)-treated tubers. These results, along with the respiratory kinetics of aged slices from ethylene-treated tubers, suggest that aged slices and fresh slices from ethylene-treated tubers are biochemically dissimilar.  相似文献   

10.
Leaves and leaf slices from Aloe arborescens Mill. were used to study the interrelations between Crassulacean acid metabolism, photosynthesis, and respiration. Oxygen exchange of leaf slices was measured polarographically. It was found that the photosynthetic utilization of stored malic acid resulted in a net evolution of oxygen. This oxygen production, and the decrease in acid content of the leaf tissue, were completely inhibited by amytal, although the rate of respiratory oxygen uptake was hardly affected by the presence of this inhibitor of mitochondrial electron transport. Other poisons of respiration (cyanide) and of the tricarboxylic acid cycle (trifluoroacetate, 2-diethyl malonate) also were effective in preventing acid-dependent oxygen evolution. It is concluded that the mobilization of stored acids during light-dependent deacidification of the leaves depends on the operation of the tricarboxylic acid cycle and of the electron transport of the mitochondria.  相似文献   

11.
Ipomeamarone accumulation in sweet potato (Ipomoea batatas) roots infected with Ceratocystis fimbriata (black rot) was decreased by one-third when roots were stored under 100 ppm ethylene. This effect of ethylene was not observed when infected tissue was also treated with benzylisothiocyanate. Ethylene treatment and long term infection were associated with the accumulation of 4-ipomeanol and 1-ipomeanol.  相似文献   

12.
(1) Acute hypoxia was produced in adult rats by cyanide inhalation and the effect on the active transport of amino acids was studied in brain slices. (2) Initial and steady-state accumulation of amino acids and rates of amino acid exit were identical in brain slices from control and treated animals when a glucose-containing incubation medium was used. (3) When the incubation was carried out in a glucose-free incubation medium, the inhibition of initial and steady-state accumulation and the stimulation of amino acid exit observed in control slices were significantly reduced or abolished in slices from treated animals. (4) Tissue swelling, size of ‘inulin space’ and glucose consumption did not differ in the two groups of animals. (5) Also the respiration rate was identical in slices from control and treated animals incubated in the presence of glucose. In the absence of added substrate, brain slices from treated animals consumed 15-20 per cent more oxygen than control slices. (6) A possible correlation between the effects observed on amino acid transport and on respiration is suggested. The reasons why cyanide given in vivo or added in vitro have different effects on amino acid transport in brain slices are discussed.  相似文献   

13.
The effects of different concentrations of CO(2) (1%, 2.5% and 5%) on the antioxidant capacity, total phenols, flavonoids, protein content and phenol biosynthetic enzymes in roots of Panax ginseng were studied in bioreactor (working volume 4 l) after 15, 30 and 45 days. CO(2) induced accumulation of total phenolics in a concentration and duration dependent manner. Total phenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity increased 60%, 30% and 20% at 2.5% CO(2) after 45 days compared to control in P. ginseng roots which indicated that phenolics compounds played an important role in protecting the plants from CO(2). Hypothesizing that increasing the phenolic compounds in roots of P. ginseng may increase its nutritional functionality; we investigated whether pentose phosphate pathway (PPP), shikimate/phenylpropanoid pathway enzymes have a role in phenolics mobilization in P. ginseng roots. Fresh weight (FW), dry weight (DW) and growth ratio was increased at 1% and 2.5% CO(2) only after 45 days, however, unaffected after 15 and 30 days. Results also indicated that high CO(2) progressively stimulated the activities of glucose 6 phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49), shikimate dehydrogenase (SKDH, E.C. 1.1.1.25), phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5), cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195), caffeic acid (CA) peroxidase and chlorogenic acid (CGA) peroxidase after 15, 30 and 45 days. Increased CO(2) levels resulted in increases in accumulation of total protein (45%), non-protein thiol (NP-SH) (30%) and cysteine contents (52%) after 45 days compared to control and increased activities of beta-glucosidase (GS, E.C. 3.2.1.21) and polyphenol oxidase (PPO, E.C. 1.10.3.2) in P. ginseng roots indicated that they played an important role in protecting the plants from CO(2). These results strongly suggest that high concentration of CO(2) delivered to ginseng root suspension cultures induced the accumulation of total phenolics possessing high antioxidant properties probably useful for human health. Therefore, roots of P. ginseng are considered as a good source of phenolics compounds with high antioxidants capacity and can be produced on a large scale.  相似文献   

14.
Carrot (Daucus carota L.) roots stored at 3 ± 1°C in an atmosphere containing 100 μ1/I of ethylene had their total phenol content increased markedly as compared to control samples kept in air. The increase was two-fold: i. higher level of pre-existing phenols, particularly isochlorogenic acid, ii. de novo synthesis of (at least) four compounds, two of which were identified as 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin, and 5-hydroxy-7-methoxy-2-methylchromone, which are not normally present in carrot tissues.  相似文献   

15.
A large increase in the activity of hydroxycinnamyl CoA:quinate hydroxycinnamyl transferase (CQT) occurred in potatoes stored at 0 and 2° and such an increase was prevented by storage at either 5 or 10°. The increase was most rapid in potatoes stored at 0° where it reached a maximum after 28 days and then declined slowly during storage for up to 6 months. Accompanying these changes in CQT were transitory increases in p-coumarate CoA ligase and PAL which occured during the first few weeks of storage at 0° and during this period there was nearly a two fold increase in the chlorogenic acid content of the tissue. The increase in chlorogenic acid did not occur at 10° when the increases in PAL, ligase and CQT were also prevented. The increase in CQT was reversed when tubers stored at 0° for 14 days were returned to 10° and this warming up period prevented further increase in CQT on return to 0°. The increase in CQT at 0° was prevented if the air in the storageatmosphere was replaced by N2, 1 % O2 or 10–15% CO2. Similar increases in CQT, ligase and chlorogenic acid occurred in sweet potatoes stored at 7.5° but were prevented by storage at 15°. The role of PAL, ligase and CQT in the control of chlorogenic acid accumulation in these commodities and the significance of changes in their activities in relation to physiological changes at low temperatures are discussed.  相似文献   

16.
Mc Clure , T. T. (Plant Pest Control Division, ARS, USDA, Washington, D. C.) Chlorogenic acid accumulation and wound healing in sweet potato roots . Amer. Jour. Bot. 47(4) : 277—280. Illus. 1960.–Chlorogenic acid accumulation in cells adjacent to a wound occurs before suberization and wound-periderm formation. Suberization during wound healing was highly correlated with chlorogenic acid accumulation and with wound-periderm formation. The possible role of chlorogenic acid as a source of chemical units for suberization is suggested. Histochemical tests indicate that suberization during wound healing may be a form of lignification. Over 5 times as much lignin was found by chemical analysis in the tissues of healed surfaces as in controls.  相似文献   

17.
When treated with ethylene in O2, conditioned potato (Solanum tuberosum L. cv. Russet Burbank) tubers – that is, tubers kept at room temperature for 10 days or more – yield slices that are CN? resistant. Ten % CO2 in the gas mixture not only synergizes the effect of ethylene, but replaces the need for conditioning as well. The response to CO2 is more pronounced with increasing time from harvest. By contrast fresh slices from untreated tubers are CN? sensitive, as are slices from tubers incubated in O2 or O2 plus CO2. The suggestion is made that CN? resistance is constitutive, and that treatment with ethylene/CO2 in O2 confers on potato tuber tissue a resistance to the extensive degradation of membrane phospholipids that normally attends slicing and leads to the loss of CN? resistance. In this connection respiration inhibition by imidazole, an inhibitor of fatty acid α-oxidation, is extensive in slices of untreated tubers, and sharply diminished in slices of ethylene-treated tubers in proportion to their CN? resistance. The coextensive rise of respiration rate and CN? resistance in aged potato slices has led to the presumption that the CN?-resistant path mediates the respiration climax. Accordingly the alkaloid, lycorine, has been considered to inhibit the development of CN? resistance in aging potato slices because it curtails the wound-induced respiration. A comparison was carried out on the effect of lycorine on CN?-sensitive and CN?-resistant fresh slices – the latter obtained from ethylene/CO2-treated tubers. Lycorine suppressed the development of the wound-induced respiration without restricting the development of CN? resistance.  相似文献   

18.
Impact of various nitrate concentrations (14.12 mM, 3.53 mM, no nitrate) or ammonium presence (14.12 mM) on physiological and metabolic changes in Hypericum perforatum after 14 days of cultivation was monitored. Nitrate deficiency suppressed growth of shoots but stimulated root growth while ammonium suppressed root growth: concomitant changes of ascorbic acid and glutathione supported these growth changes, e.g., unaltered level in roots under nitrate deficiency but depleted in ammonium treatment. Soluble proteins and water content were more suppressed by nitrate deficiency but total ROS, nitric oxide formation, and antioxidative enzyme activities (APX and SOD) indicate higher sensitivity of plants to ammonium. Though both extreme treatments (NO3− deficiency or ammonium) stimulated accumulation of total soluble phenols and affected PAL activity (in comparison with full or 1/4× nitrate dose), major phenols (chlorogenic acid and three flavonoids) were elevated mainly by NO3– deficiency. At the level of specific metabolites, NO3– deficiency had stimulatory impact on pseudohypericin (but not hypericin) content while hyperforin decreased. Expression of earlier putative gene of hypericin biosynthesis (hyp-1) showed rather partial correlation with pseudohypericin amount. Data indicate that depletion of NO3– is useful to obtain Hypericum plants with higher amount of health-positive secondary metabolites.  相似文献   

19.
Banana (Musa acuminata AAA cv. Nanicão) slices were infiltrated with mannitol (control) and mannitol plus indole-3-acetic acid (IAA); then, some important ripening parameters like starch degradation, synthesis of ethylene and respiration were monitored. The contents of free-IAA and conjugated forms of IAA (ester and amide) were analyzed, by GC-MS-SIM, throughout the ripening in both banana slices and whole bananas. The starch degradation of IAA-treated slices was delayed for several days, but there was no difference between control and IAA-treated slices in the ethylene and respiration profiles. On day zero after infiltration, free-IAA levels were 500-fold higher in IAA-treated slices than in the control slices, but within 72 hours they declined to values 15-fold higher than those in the control group, with concomitant increase in IAA-ester. Similar to the banana slices, the onset of starch degradation occurred in whole bananas only when the free-IAA concentration was about 4 ng/g FW. The results herein suggest that IAA levels play a role during banana ripening in events like starch degradation with the consequence of banana sweetening.  相似文献   

20.
The effects of methyl jasmonate, salicylic acid and ethylene on alkaloid accumulation in in vitro cell suspension, hairy roots and rootless shoot cultures of Catharanthus roseus were analyzed. Ajmalicine, but not catharanthine, accumulation was promoted by jasmonate and ethylene treatments in cell suspensions. In hairy roots, jasmonate induced the accumulation of both alkaloids, whereas ethylene only induced catharanthine accumulation. In shoot cultures, positive effects of jasmonate and ethylene were recorded only in vindoline accumulation. Ethylene diminished catharanthine accumulation in these cultures. No effect of salicylic acid was observed in any of the studied in vitro culture systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号