首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The heterodimer HIF‐1α (hypoxia inducible factor)/HIF‐β (also known as ARNT‐aryl hydrocarbon nuclear translocator) is a key mediator of cellular response to hypoxia. The interaction between these monomer units can be modified by the action of small molecules in the binding interface between their C‐terminal heterodimerization (PasB) domains. Taking advantage of the presence of several cysteine residues located in the allosteric cavity of HIF‐1α PasB domain, we applied a cysteine‐based reactomics “hotspot identification” strategy to locate regions of HIF‐1α PasB domain critical for its interaction with ARNT. COMPOUND 5 was identified using a mass spectrometry‐based primary screening strategy and was shown to react specifically with Cys255 of the HIF‐1α PasB domain. Biophysical characterization of the interaction between PasB domains of HIF‐1α and ARNT revealed that covalent binding of COMPOUND 5 to Cys255 reduced binding affinity between HIF‐1α and ARNT PasB domains approximately 10‐fold. Detailed NMR structural analysis of HIF‐1α‐PasB‐COMPOUND 5 conjugate showed significant local conformation changes in the HIF‐1α associated with key residues involved in the HIF‐1α/ARNT PasB domain interaction as revealed by the crystal structure of the HIF‐1α/ARNT PasB heterodimer. Our screening strategy could be applied to other targets to identify pockets surrounding reactive cysteines suitable for development of small molecule modulators of protein function.  相似文献   

3.
4.
5.
ATG14 binding to BECN/Beclin homologs is essential for autophagy, a critical catabolic homeostasis pathway. Here, we show that the α‐helical, coiled‐coil domain (CCD) of BECN2, a recently identified mammalian BECN1 paralog, forms an antiparallel, curved homodimer with seven pairs of nonideal packing interactions, while the BECN2 CCD and ATG14 CCD form a parallel, curved heterodimer stabilized by multiple, conserved polar interactions. Compared to BECN1, the BECN2 CCD forms a weaker homodimer, but binds more tightly to the ATG14 CCD. Mutation of nonideal BECN2 interface residues to more ideal pairs improves homodimer self‐association and thermal stability. Unlike BECN1, all BECN2 CCD mutants bind ATG14, although more weakly than wild type. Thus, polar BECN2 CCD interface residues result in a metastable homodimer, facilitating dissociation, but enable better interactions with polar ATG14 residues stabilizing the BECN2:ATG14 heterodimer. These structure‐based mechanistic differences in BECN1 and BECN2 homodimerization and heterodimerization likely dictate competitive ATG14 recruitment.  相似文献   

6.
7.
Allosteric HIV‐1 integrase (IN) inhibitors (ALLINIs) bind at the dimer interface of the IN catalytic core domain (CCD), and potently inhibit HIV‐1 by promoting aberrant, higher‐order IN multimerization. Little is known about the structural organization of the inhibitor‐induced IN multimers and important questions regarding how ALLINIs promote aberrant IN multimerization remain to be answered. On the basis of physical chemistry principles and from our analysis of experimental information, we propose that inhibitor‐induced multimerization is mediated by ALLINIs directly promoting inter‐subunit interactions between the CCD dimer and a C‐terminal domain (CTD) of another IN dimer. Guided by this hypothesis, we have built atomic models of inter‐subunit interfaces in IN multimers by incorporating information from hydrogen‐deuterium exchange (HDX) measurements to drive protein‐protein docking. We have also developed a novel free energy simulation method to estimate the effects of ALLINI binding on the association of the CCD and CTD. Using this structural and thermodynamic modeling approach, we show that multimer inter‐subunit interface models can account for several experimental observations about ALLINI‐induced multimerization, including large differences in the potencies of various ALLINIs, the mechanisms of resistance mutations, and the crucial role of solvent exposed R‐groups in the high potency of certain ALLINIs. Our study predicts that CTD residues Tyr226, Trp235 and Lys266 are involved in the aberrant multimer interfaces. The key finding of the study is that it suggests the possibility of ALLINIs facilitating inter‐subunit interactions between an external CTD and the CCD‐CCD dimer interface.  相似文献   

8.
Enzyme-inhibitor specificity was studied for alpha-amylases and their inhibitors. We purified and cloned the cDNAs of two different alpha-amylase inhibitors from the common bean (Phaseolus vulgaris) and have recently cloned the cDNA of an alpha-amylase of the Mexican bean weevil (Zabrotes subfasciatus), which is inhibited by alpha-amylase inhibitor 2 but not by alpha-amylase inhibitor 1. The crystal structure of AI-1 complexed with pancreatic porcine alpha-amylase allowed us to model the structure of AI-2. The structure of Zabrotes subfasciatus alpha-amylase was modeled based on the crystal structure of Tenebrio molitor alpha-amylase. Pairwise AI-1 and AI-2 with PPA and ZSA complexes were modeled. For these complexes we first identified the interface forming residues. In addition, we identified the hydrogen bonds, ionic interactions and loss of hydrophobic surface area resulting from complex formation. The parameters we studied provide insight into the general scheme of binding, but fall short of explaining the specificity of the inhibition. We also introduce three new tools-software packages STING, HORNET and STINGPaint-which efficiently determine the interface forming residues and the ionic interaction data, the hydrogen bond net as well as aid in interpretation of multiple sequence alignment, respectively.  相似文献   

9.
Quinoline-2,4-dicarboxylic acids (QDCs) bearing lipophilic substituents in the 6- or 7-position were shown to be inhibitors of the glutamate vesicular transporter (VGLUT). Using the arrangement of the QDC lipophilic substituents as a template, libraries of X(1)X(2)EF and X(1)X(2)EW tetrapeptides were synthesized and tested as VGLUT inhibitors. The peptides QIEW and WNEF were found to be the most potent. Further stereochemical deconvolution of these two peptides showed dQlIdElW to be the best inhibitor (K(i)=828+/-252 microM). Modeling and overlay of the tetrapeptide inhibitors with the existing pharmacophore showed that H-bonding and lipophilic residues are important for VGLUT binding.  相似文献   

10.
Focal adhesion kinase is an important target for the treatment of many kinds of cancers. Inhibitors of FAK are proposed to be the anticancer agents for multiple tumors. The interaction characteristic between FAK and its inhibitors is crucial to develop new inhibitors. In the present article, we used Molecular Dynamic (MD) simulation method to explore the characteristic of interaction between FAK and three inhibitors (PHM16, TAE226, and ligand3). The MD simulation results together with MM-GB/SA calculations show that the combinations are enthalpy-driven process. Cys502 and Asp564 are both essential residues due to the hydrogen bond interactions with inhibitors, which was in good agreement with experimental data. Glu500 can form a non-classical hydrogen bond with each inhibitor. Arg426 can form electrostatic interactions with PHM16 and ligand3, while weaker with TAE226. The electronic static potential was employed, and we found that the ortho-position methoxy of TAE226 has a weaker negative charge than the meta-position one in PHM16 or ligand3. Ile428, Val436, Ala452, Val484, Leu501, Glu505, Glu506, Leu553, Gly563 Leu567, Ser568 are all crucial residues in hydrophobic interactions. The key residues in this work will be available for further inhibitor design of FAK and also give assistance to further research of cancer.  相似文献   

11.
Although Hsp90‐family chaperones have been extensively targeted with ATP‐competitive inhibitors, it is unknown whether high affinity is achieved from a few highly stabilizing contacts or from many weaker contacts within the ATP‐binding pocket. A large‐scale analysis of Hsp90α:inhibitor structures shows that inhibitor hydrogen‐bonding to a conserved aspartate (D93 in Hsp90α) stands out as most universal among Hsp90 inhibitors. Here we show that the D93 region makes a dominant energetic contribution to inhibitor binding for both cytosolic and organelle‐specific Hsp90 paralogs. For inhibitors in the resorcinol family, the D93:inhibitor hydrogen‐bond is pH‐dependent because the associated inhibitor hydroxyl group is titratable, rationalizing a linked‐protonation event previously observed by the Matulis group. The inhibitor hydroxyl group pKa associated with the D93 hydrogen‐bond is therefore critical for optimizing the affinity of resorcinol derivatives, and we demonstrate that spectrophotometric measurements can determine this pKa value. Quantifying the energetic contribution of the D93 hotspot is best achieved with the mitochondrial Hsp90 paralog, yielding 3–6 kcal/mol of stabilization (35–60% of the total binding energy) for a diverse set of inhibitors. The Hsp90 Asp93?Asn substitution has long been known to abolish nucleotide binding, yet puzzlingly, native sequences of structurally similar ATPases, such as Topoisomerasese II, have an asparagine at this same crucial site. While aspartate and asparagine sidechains can both act as hydrogen bond acceptors, we show that a steric clash prevents the Hsp90 Asp93?Asn sidechain from adopting the necessary rotamer, whereas this steric restriction is absent in Topoisomerasese II.  相似文献   

12.
We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1‐PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N‐hydroxysuccinimidobiotin (NHS‐biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS‐biotin when compared with the [PB1‐PA] heterodimer. Mutational analysis of residues in two such regions—at K265 and K481 of PB1, which were about three‐ and twofold, respectively, less accessible to biotinylation in the PB1‐PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q‐POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein–protein interaction interfaces. The Q‐POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs.  相似文献   

13.
Li D  Ji B  Hwang KC  Huang Y 《PloS one》2011,6(4):e19268
To understand the underlying mechanisms of significant differences in dissociation rate constant among different inhibitors for HIV-1 protease, we performed steered molecular dynamics (SMD) simulations to analyze the entire dissociation processes of inhibitors from the binding pocket of protease at atomistic details. We found that the strength of hydrogen bond network between inhibitor and the protease takes crucial roles in the dissociation process. We showed that the hydrogen bond network in the cyclic urea inhibitors AHA001/XK263 is less stable than that of the approved inhibitor ABT538 because of their large differences in the structures of the networks. In the cyclic urea inhibitor bound complex, the hydrogen bonds often distribute at the flap tips and the active site. In contrast, there are additional accessorial hydrogen bonds formed at the lateral sides of the flaps and the active site in the ABT538 bound complex, which take crucial roles in stabilizing the hydrogen bond network. In addition, the water molecule W301 also plays important roles in stabilizing the hydrogen bond network through its flexible movement by acting as a collision buffer and helping the rebinding of hydrogen bonds at the flap tips. Because of its high stability, the hydrogen bond network of ABT538 complex can work together with the hydrophobic clusters to resist the dissociation, resulting in much lower dissociation rate constant than those of cyclic urea inhibitor complexes. This study may provide useful guidelines for design of novel potent inhibitors with optimized interactions.  相似文献   

14.
Dimerization of G protein‐coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin‐converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C‐terminal residues of vasoactive peptides including apelin‐13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co‐immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α‐subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease.  相似文献   

15.
16.
The two major envelope proteins of arteriviruses, the membrane protein (M) and the major glycoprotein (GP(5)), associate into a disulfide-linked heterodimer that is incorporated into the virion and has been assumed to be a prerequisite for virus assembly. Using an equine arteritis virus (EAV) infectious cDNA clone, we have analyzed the requirement for GP(5)-M heterodimerization and have identified the Cys residues involved in the formation of the GP(5)-M disulfide bond. The single Cys residue (Cys-8) in the M ectodomain was crucial for heterodimerization and virus infectivity. Mutagenesis of any of the five Cys residues in the GP(5) ectodomain or removal of the single GP(5) N-glycosylation site also rendered the full-length clone noninfectious. However, an analysis of revertants yielded an exceptional pseudorevertant in which residues 52 to 79 of the GP(5) ectodomain had been deleted and the original Cys-80-->Ser mutation had been maintained. Consequently, this revertant lacked the GP(5) N-glycosyation site (Asn-56) and retained only a single cysteine residue (Cys-34). By using this GP(5) deletion, we confirmed that Cys-34 of GP(5) and Cys-8 of M are essential for GP(5)-M heterodimerization, a key event in the assembly of the EAV envelope.  相似文献   

17.
18.
Co‐administration of beta‐lactam antibiotics and beta‐lactamase inhibitors has been a favored treatment strategy against beta‐lactamase‐mediated bacterial antibiotic resistance, but the emergence of beta‐lactamases resistant to current inhibitors necessitates the discovery of novel non‐beta‐lactam inhibitors. Peptides derived from the Ala46–Tyr51 region of the beta‐lactamase inhibitor protein are considered as potent inhibitors of beta‐lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell‐penetrating peptides could guide the design of beta‐lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta‐lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell‐penetrating peptide pVEC, our approach involved the addition of the N‐terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta‐lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta‐lactam antibiotic ampicillin, and the beta‐lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N‐terminus of the beta‐lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N‐terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
20.
The transmembrane domains of the envelope glycoprotein E1 and E2 have crucial multifunctional roles in the biogenesis of hepatitis C virus. We have performed molecular dynamics simulations to investigate a structural model of the transmembrane segments of the E1–E2 heterodimer. The simulations support the key role of the Lys370–Asp728 ion pair for mediating the E1–E2 heterodimerization. In comparison to these two residues, the simulation results also reveal the differential effect of the conserved Arg730 residue that has been observed in experimental studies. Furthermore, we discovered the formation of inter-helical hydrogen bonds via Asn367 that stabilize dimer formation. Simulations of single and double mutants further demonstrate the importance of the ion-pair and polar interactions between the interacting helix monomers. The conformation of the E1 fragment in the simulation of the E1–E2 heterodimer is in close agreement with an NMR structure of the E1 transmembrane segment. The proposed model of the E1–E2 heterodimer supports the postulated cooperative insertion of both helices by the translocon complex into the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号