首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To ascertain the presence of adenosine receptors in the trout testis, cells isolated from testes at different spermatogenetic stages were cultured in the presence or absence of adenosine, adenosine receptor agonists, or antagonists and of cAMP analogs, for up to 20 min, or 20 hr, or 4.5 days. Cyclic AMP production was then assayed or 3H-thymidine incorporation was measured. Cellular content of cAMP was enhanced by adenosine, by the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), and by 2-p(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680), an adenosine A2A receptor-selective agonist. The increase in cAMP induced by the adenylate cyclase activator L-858051 was inhibited by the adenosine A1)receptor-selective agonists R-N6-(2-phenylisopropyl)adenosine (R-PIA) and N6-cyclopentyladenosine (CPA). These effects were antagonized by the two adenosine A2)receptor antagonists 3,7-dimethyl-1-propargylxanthine (DMPX) and 8-(3-chlorostyryl)caffeine (CSC), and by the adenosine A1)receptor-selective antagonist 8-cyclopentyl-1,3dipropylxanthine (CPX), respectively. Increase in the cAMP content induced by adenosine was inhibited by the cell permeable adenylate cyclase inhibitor 2',5'-dideoxyadenosine. These data suggest that A(1) and A(2) adenosine receptors which respectively inhibit and stimulate adenylate cyclase activity are present on trout testicular cells (unidentified), while the presence of A3 adenosine receptor subtype was not apparent. 3H-thymidine incorporation decreased in the presence of the adenylate cyclase activator L-858051 and of the cAMP analogs 8-CPT cAMP and Sp-5,6-DCI-cBiMPS, regardless of the presence or absence of the phosphodiesterase inhibitor RO 20-1724. This suggests that an increase in testicular cAMP may act as a negative growth regulator for the mitotic germ cells. In agreement with these data, the activation of A2 stimulatory receptors inhibited short-term (20 hr) DNA synthesis. However, the activation of A1 inhibitory receptors had the same effect. This suggests that events, cAMP-dependent or independent, induced by the activation of testicular adenosine receptors, may participate in the regulation of trout male germ cell proliferation.  相似文献   

2.
The effects of adenosine and subtype-specific activators of adenosine receptors (A1, A2A, A2B and A3) were studied on the release of interleukin-1beta (IL-1beta) from peripheral mononuclear cells, monocytes and lymphocytes. In the cells activated by the protein kinase C specific phorbol ester (phorbol 12-myristate 13-acetate) and Ca(2+) ionophore (A23187) both adenosine and the subtype-specific receptor agonists, CPA (A1), CGS 21680 (A2A) and IB-MECA (A3) induced a concentration-dependent inhibition of IL-1beta release. The rank order of potency in the inhibition of IL-1beta release was CPA=CGS 21680>IB-MECA>adenosine>NECA (in the presence of A1, A2A and A3 receptor inhibitors). The inhibitory actions of CPA, CGS 21680 or IB-MECA were significantly reduced in the presence of DPCPX, ZM 243185 or MRS 1191 as subtype-specific antagonists on A1, A2A and A3 adenosine receptors, respectively. It can be concluded that adenosine inhibits the release of IL-1beta from the activated human peripheral mononuclear cells. In this process A1, A2A and A3 receptors are involved.  相似文献   

3.
The effects of selective adenosine receptor agonists [N6-cyclopentyladenosine (CPA) and N-ethylcarboxamidoadenosine (NECA)] and antagonists [8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo[1,5-c]quinazoline-5-im ine (CGS-15943A)] on aspartate and glutamate release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (for 20 min) was elicited by four-vessel occlusion. Excitatory amino acid releases were compared from control ischemic rats and drug-treated rats. Basal levels of aspartate and glutamate release were not greatly affected by pretreatment with the adenosine receptor agonists or antagonists. However, CPA (10(-10) M) and NECA (10(-9) M) significantly inhibited the ischemia-evoked release of aspartate and glutamate into cortical superfusates. The ability to block ischemia-evoked release of excitatory amino acids was not evident at higher concentrations of CPA (10(-6) M) or NECA (10(-5) M). The selective A1 receptor antagonist DPCPX also had no effect on release when administered at a low dosage (0.01 mg/kg, i.p.) but blocked the ischemia-evoked release of aspartate and glutamate at a higher dosage (0.1 mg/kg). Evoked release was inhibited by the selective A2 receptor antagonist CGS-15943A (0.1 mg/kg, i.p.). Thus, adenosine and its analogs may suppress ischemia-evoked release of excitatory neurotransmitter amino acids via high-affinity A1 receptors, whereas coactivation of lower-affinity A2 receptors may block (or reverse) the A1-mediated response.  相似文献   

4.
Examination of the binding characteristics of the adenosine agonist radioligands [3H]N6-cyclohexyladenosine [( 3H]CHA), [3H]cyclopentyladenosine [( 3H]CPA), and [3H]5'-N-ethylcarboxamido adenosine [( 3H]NECA) to membranes prepared from PC12 cells showed that the A-1-selective ligands (CHA and CPA) had minimal binding, which was not amenable to analysis using curve-fitting programs. However, [3H]NECA, a nonselective A-1/A-2 agonist, gave reproducible binding, which was enhanced by removal of endogenous adenosine, using the catabolic enzyme adenosine deaminase. This binding was of high affinity (KD = 4.7 nM) with limited capacity (263 fmol/mg of protein). Specific binding of [3H]NECA was unaffected by the presence of either CPA (50 nM) or MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM), a finding suggesting involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. Binding of [3H]NECA to PC12 cell membranes was stereo-selective, with the R isomer of N6-phenylisopropyladenosine (PIA) being approximately 12 times more active than S-PIA. The A-1-selective agonist CPA was a weak inhibitor of [3H]NECA binding (Ki = 251 nM). The rank order of activity of adenosine agonists in displacing specific [3H]NECA binding was NECA greater than or equal to 2-chloroadenosine greater than CHA greater than or equal to 5'-N-methylcarboxamido adenosine greater than or equal to R-PIA greater than CPA greater than S-PIA. Binding was also displaced by the marine adenosine agonist 1-methylisoguanosine and by a series of xanthine antagonists with the activity order being 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 8-phenyltheophylline greater than 8-p-sulfophenyltheophylline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation.  相似文献   

6.
7.
Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.  相似文献   

8.
Evidence for A1 and A2 adenosine receptors in guinea pig trachea   总被引:4,自引:0,他引:4  
The adenosine analogs [5'-N-ethylcarboxamideadenosine (NECA), 2-Chloro-adenosine (2-ClA), R-phenylisopropyladenosine (R-PIA), N6-cyclohexyl adenosine (CHA), and N6-cyclopentyladenosine (CPA)] produced both relaxation and contraction responses in isolated guinea-pig trachea. A concentration-related relaxation response was observed in trachea which were precontracted with either histamine or KC1. This response followed an order of analog potency that was indicative of the A2 receptor subtype (NECA greater than 2-ClA greater than R-PIA greater than CPA greater than CHA). Theophylline, an adenosine-receptor antagonist, blocked this relaxation response. In addition, a concentration-related contractile response was produced with adenosine analogs in those trachea that were not previously contracted. In contrast, the contractile response followed an analog potency indicative of the A1 receptor subtype (R-PIA greater than 2-ClA = CPA = CHA). This contractile response was not mediated by cholinergic, adrenergic or histaminergic receptors. 2-ClA induced a biphasic response, while NECA only relaxed these tissue under basal tone. Unlike the relaxation response, these contractile responses were not attenuated by theophylline, but were blocked by 1,3 dipropyl-8-(2 amino-4-chlorophenyl)xanthine (PACPX). These findings confirm the existence of two subpopulations of adenosine receptors in guinea pig trachealis muscle.  相似文献   

9.
We have recently demonstrated that human neutrophils (PMN) possess two different classes of adenosine receptors (A1 and A2) that, when occupied, promote chemotaxis and inhibit the generation of reactive oxygen species (e.g., O2- and H2O2), respectively. We have previously demonstrated that adenosine protects endothelial cells (EC) from injury by stimulated neutrophils (PMN) both by diminishing generation of H2O2 and inhibiting adherence of PMN to EC. We therefore determined whether occupancy of A1 or A2 adenosine receptors regulated adherence of PMN to EC. At concentrations similar to those required to inhibit release of O2- by ligation of A2 receptors, both adenosine (IC50 = 56 nM) and 5'N-ethylcarboxamidoadenosine (NECA, IC50 = 8 nM), the most potent A2 agonist, inhibited adherence to EC by stimulated PMN (FMLP, 0.1 microM). In direct contrast, the specific A1 agonists N6-phenylisopropyladenosine and N6-cyclopentyladenosine (CPA) promoted PMN adherence to EC at concentrations of 1-100 nM. To further investigate the mechanisms by which adenosine receptor agonists affected the adherence of stimulated PMN we examined the effect of NECA (A2) and CPA (A1) on the adherence of PMN to fibrinogen (a ligand for the beta 2 integrin CD11b/CD18) and to gelatin. In a dose-dependent manner (IC50 = 2 nM), NECA inhibited the adherence of FMLP-treated PMN to fibrinogen- but not gelatin-coated plates. In contrast, CPA (A1) promoted adherence of stimulated PMN to gelatin-(EC50 = 13 pM) but not fibrinogen-coated plates. Theophylline (10 microM), an adenosine receptor antagonist, reversed the inhibition by NECA (0.3 microM) of stimulated neutrophil adherence to fibrinogen. These observations not only confirm the presence of A1 and A2 receptors on PMN but also suggest two opposing roles for adenosine in inflammation. Occupancy of A1 receptors promotes neutrophil adherence to endothelium and chemotaxis (a proinflammatory role) whereas occupancy of A2 receptors inhibits adherence and generation of toxic oxygen metabolites (an antiinflammatory role).  相似文献   

10.
This study continues our earlier findings on the hematopoiesis-modulating effects of adenosine A1 and A3 receptor agonists that were performed on committed hematopoietic progenitor and precursor cell populations. In the earlier experiments, N 6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, was found to inhibit proliferation in the above-mentioned hematopoietic cell systems, whereas N 6-(3-iodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA), an adenosine A3 receptor agonist, was found to stimulate it. The topic of this study was to evaluate the possibility that the above-mentioned adenosine receptor agonists modulate the behavior of early hematopoietic progenitor cells and hematopoietic stem cells. Flow cytometric analysis of hematopoietic stem cells in mice was employed, as well as a functional test of hematopoietic stem and progenitor cells (HSPCs). These techniques enabled us to study the effect of the agonists on both short-term repopulating ability and long-term repopulating ability, representing multipotent progenitors and hematopoietic stem cells, respectively. In a series of studies, we did not find any significant effect of adenosine agonists on HSPCs in terms of their numbers, proliferation, or functional activity. Thus, it can be concluded that CPA and IB-MECA do not significantly influence the primitive hematopoietic stem and progenitor cell pool and that the hematopoiesis-modulating action of these adenosine receptor agonists is restricted to more mature compartments of hematopoietic progenitor and precursor cells.  相似文献   

11.
12.
A novel receptor cDNA was isolated from a human hippocampal cDNA library. The encoded polypeptide contains structural features consistent with its classification as a G protein-coupled receptor and shares 45% homology with the human A1 and A2a adenosine receptors. Chinese hamster ovary K1 cells expressing this receptor showed marked stimulation of adenylate cyclase when treated with 1mM adenosine. There was no response to ligands selective for A1 and A2a receptors but the general adenosine agonist N-ethylcarboxyamidoadenosine (NECA) caused a 10 fold increase in cyclic AMP accumulation with an EC50 of approximately 0.9 microM. This effect was inhibited by the adenosine receptor antagonist theophylline. Specific binding of A1 and A2a selective agonists and NECA was not detected. It is proposed that the novel receptor is a human brain adenosine A2b receptor subtype.  相似文献   

13.
Discrete Distributions of Adenosine Receptors in Mammalian Retina   总被引:7,自引:6,他引:1  
Binding sites for both the adenosine A1 receptor agonists [3H]phenylisopropyladenosine and [3H]cyclohexyladenosine and the mixed A1-A2 agonist N-[3H]ethylcarboxamidoadenosine [( 3H]NECA) were localized in rabbit and mouse retinas using autoradiographic techniques. These two classes of agonists bound to very different regions of mammalian retinas. A1 agonist binding was localized to the inner retina, particularly over the inner plexiform layer. The binding of [3H]NECA was observed primarily over the retinal pigmented epithelium and the outer and inner segments of photoreceptors. [3H]NECA labeling was not affected either by including a low concentration of unlabeled A1 agonist or by pretreating tissue with N-ethylmaleimide to inhibit ligand binding at A1 sites. While virtually all of the [3H]NECA binding was displaced by an excess of unlabeled NECA, displacement with antagonist or a large excess of cyclohexyladenosine revealed that approximately 30% of the [3H]NECA binding was at non-A1,A2 sites. The majority of the binding in the outer retina thus labeled A2 receptor sites. The unique localizations of the two classes of adenosine receptors suggest different functions in visual processing.  相似文献   

14.
Caffeine ingestion can delay fatigue during exercise, but the mechanisms remain elusive. This study was designed to test the hypothesis that blockade of central nervous system (CNS) adenosine receptors may explain the beneficial effect of caffeine on fatigue. Initial experiments were done to confirm an effect of CNS caffeine and/or the adenosine A(1)/A(2) receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) on spontaneous locomotor activity. Thirty minutes before measurement of spontaneous activity or treadmill running, male rats received caffeine, NECA, caffeine plus NECA, or vehicle during four sessions separated by approximately 1 wk. CNS caffeine and NECA (intracerebroventricular) were associated with increased and decreased spontaneous activity, respectively, but caffeine plus NECA did not block the reduction induced by NECA. CNS caffeine also increased run time to fatigue by 60% and NECA reduced it by 68% vs. vehicle. However, unlike the effects on spontaneous activity, pretreatment with caffeine was effective in blocking the decrease in run time by NECA. No differences were found after peripheral (intraperitoneal) drug administration. Results suggest that caffeine can delay fatigue through CNS mechanisms, at least in part by blocking adenosine receptors.  相似文献   

15.
In the search for agonists for the elusive A2B adenosine receptor subtypes, 2-phenylhydroxypropynyl-5'-N-methylcarboxamido adenosine (PHPMECA, 14), 2-phenylhydroxypropynyl-5'-N-propylcarboxamido adenosine (PHPPECA, 15), and N6-ethyl-2-phenylhydroxypropynyl-5'-N-ethylcarboxamidoadenosine (19) were synthesized on the basis that introduction of alkynyl chains in 2-position of adenosine derivatives resulted in reasonably good A2B potency compared to NECA [see N6-ethyl-2-phenylhydroxypropynyl adenosine (5) EC50 = 1,700 nM and 2-phenylhydroxypropynyl-5'-N-ethylcarboxamido adenosine (PHPNECA, 8) EC50 = 1,100 nM, respectively]. Radioligand binding studies and adenylyl cyclase assays, performed with recently cloned human A1, A2A, A2B, and A3 adenosine receptors, showed that these modifications produced a decrease in potency at A2B receptor, as well as a general reduction in affinity at the other receptor subtypes. On the other hand, the contemporary presence of an ethyl substituent in N6-position and of a 4'-ethylcarboxamido group in the same compounds led to (R,S)-N6-ethyl-2-phenylhydroxypropynyl-5'-N-ethylcarboxamidoadenosine and (S)-N6-ethyl-2-phenylhydroxypropynyl-5'-N-ethylcarboxamidoadenosine, which did not show the expected increase in potency at A2B subtype. Hence, (S)-2-phenylhydroxypropynyl-5'-N-ethylcarboxamidoadenosine [(S)-PHPNECA] with EC50 A2B = 220 nM remains the most potent agonist at A2B receptor reported so far.  相似文献   

16.
Coupar IM  Tran BL 《Life sciences》2001,69(7):779-790
The aim of this study was to investigate whether the A1/A2 receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA), and the selective A1 agonist, N6-cyclopentyladenosine (CPA), induced physical dependence by quantifying specific antagonist-precipitated withdrawal syndromes in conscious rats. In addition, the presence of bidirectional cross-withdrawal was also investigated. The agonists were administered s.c. to groups of rats at 12 h intervals. Antagonists were administered s.c., 12 hours after the last dose, followed by observation and measurement of faecal output for 20 min. NECA (4 x 0.03 mg kg(-1), s.c) and CPA (4 x 0.03, 0.1 and 0.3 mg kg(-1), s.c.) induced physical dependence, as shown by the expression of a significant withdrawal syndrome when challenged with the adenosine A1/A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX, 0.1 mg kg(-1), s.c.) and the A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPDPX, 0.1 mg kg(-1), s.c.) respectively. The syndromes consisted of teeth chattering and shaking behaviours shown to occur in morphine-dependent animals withdrawn with naloxone viz, paw, body and 'wet-dog' shakes, but with the additional behaviours of head shaking and yawning. In further contrast to the opiate withdrawal syndrome, no diarrhoea occurred in the groups of animals treated with adenosine agonists and withdrawn with their respective antagonists. Bidirectional cross-withdrawal syndromes were also revealed when naloxone (3 mg kg(-1), s.c.) was administered to adenosine agonist pre-treated rats and adenosine antagonists were given to morphine pre-treated rats. This study provides further information illustrating that close links exist between the adenosine and opiate systems.  相似文献   

17.
Pharmacological profile of adenosine A2 receptor in PC12 cells   总被引:3,自引:0,他引:3  
The PC12 cell line, a clone isolated from a pheochromocytoma tumor of rat adrenal medulla, was shown to exclusively contain stimulatory adenosine (A2) receptors linked to adenylate cyclase (AC). AC was stimulated 6-7 fold by several agonists with a rank order of potency of 5'-N-Ethyl carboxamidoadenosine (NECA) greater than 2-Chloroadenosine (2-CADO) greater than (R)-N-Phenylisopropyladenosine (R-(-)-PIA) greater than N6-Cyclopentyladenosine (CPA) greater than N6-Cyclohexyladenosine (CHA) greater than S-(+)-PIA. AC activity was antagonized by a variety of adenosine receptor antagonists with a potency order of 1,3,-Dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX) greater than 1,3,-Diethyl-8-phenylxanthine (DPX) greater than 8-Phenyltheophylline greater than 3-Isobutyl-1-methylxanthine (IBMX) greater than 8-(p-sulfophenyl)theophylline (PST) greater than 7-(beta-chloroethyl)theophylline greater than theophylline = enprofylline = caffeine. Under conditions known to favour receptor-mediated Ni-coupled inhibition of AC, R-(-)-PIA failed to inhibit both basal and forskolin stimulated AC activity in PC12 cells, confirming the absence of an A1 mediated response. On the other hand, adenosine agonists inhibited AC activity in rat cortical membranes with a rank order of potency of CPA greater than R-(-)-PIA greater than CHA greater than NECA greater than S-(+)-PIA greater than 2-CADO. These findings suggest that PC12 cells are functionally deficient in an A1 receptor linked AC response but are efficiently coupled to A2 stimulatory receptors. The cells should prove useful for further study of A2 adenosine receptors and to establish selectivity profiles of compounds acting at both A1 and A2 receptors.  相似文献   

18.
Hemodynamic responses to adenosine, the A(1) receptor agonists N(6)-cyclopentyladenosine (CPA) and adenosine amine congener (ADAC), and the A(2) receptor agonist 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA) were investigated in the hindquarter vascular bed of the cat under constant-flow conditions. Injections of adenosine, CPA, ADAC, CPCA, ATP, and adenosine 5'-O-(3-thiotriphosphate) (ATPgamma S) into the perfusion circuit induced dose-related decreases in perfusion pressure. Vasodilator responses to the A(1) agonists were reduced by the A(1) receptor antagonists KW-3902 and CGS-15943, whereas responses to CPCA were reduced by the A(2) antagonist KF-17837. Vasodilator responses to adenosine were reduced by KW-3902, CGS-15943, and by KF-17837, suggesting a role for both A(1) and A(2) receptors. Vasodilator responses to ATP and the nonhydrolyzable ATP analog ATP gamma S were not attenuated by CGS-15943 or KF-17837. After treatment with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester, the cyclooxygenase inhibitor sodium meclofenamate, or the ATP-dependent K(+) (K) channel antagonists U-37883A or glibenclamide, responses to adenosine and ATP were not altered. Responses to adenosine, CPA, and CPCA were increased in duration by rolipram, a type 4 cAMP phosphodiesterase inhibitor, but were not altered by zaprinast, a type 5 cGMP phosphodiesterase inhibitor. When blood flow was interrupted for a 30-s period, the magnitude and duration of the reactive vasodilator response were reduced by A(1) and A(2) receptor antagonists. These data suggest that vasodilator responses to adenosine and the A(1) and A(2) agonists studied are not dependent on the release of cyclooxygenase products, nitric oxide, or the opening of K channels in the regional vascular bed of the cat. The present data suggest a role for cAMP in mediating responses to adenosine and suggest that vasodilator responses to adenosine and to reactive hyperemia are mediated in part by A(1) and A(2) receptors in the hindquarter vascular bed of the cat.  相似文献   

19.
Isolated, endothelium-free rings of vascular smooth muscle (VSM) from the ventral aorta of the dogfish shark, Squalus acanthias, were used to examine the vasoactive effects of various adenosine agonists. Cumulative addition of 2-chloroadenosine (2 Cl-ADO) over the concentration range 10 nM-1 mM resulted in a biphasic response, with a significant increase in tension at 1 microM and a more significant decline in tension at 100 microM and 1 mM, suggesting that this tissue may possess both A1 and A2 adenosine receptors. N6-Cyclopentyladenosine (N-6 CPA) and N6-(2-phenylisopropyl)adenosine, R(-)isomer (R-PIA), generally considered to be more A1 specific, also produced slight, but significant increases in tension, but only at relatively high concentrations. The more specific A1 agonist, N6-(25)-[2-endo-norbonyl] adenosine [(S)-ENBA] produced a significant increase in tension at 1 pM, reaching 28% above control at 10 nM. The response to (S)-ENBA was also biphasic, with a fall in tension at 10 microM. The relatively non-specific agonist 5'-N-ethylcarboxamidoadenosine (NECA) produced a small, but significant, increase in tension at 1 microM, with no subsequent decline in tension at higher concentrations. These results allow us to assign a tentative structure-activity relationship (SAR) for an increase in tension of (S)-ENBA much much greater than R-PIA greater than or equal to 2-Cl ADO = N-6 CPA = NECA; for the decrease, the SAR is (S)-ENBA greater than 2-Cl ADO greater than R-PIA greater than N-6 CPA = NECA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号