首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
应用反向PCR克隆慢病毒介导的转基因小鼠整合位点序列   总被引:2,自引:0,他引:2  
目的:为分析慢病毒介导的转基因小鼠中外源基因整合位点的信息,应用反向PCR克隆整合位点序列。方法:小鼠基因组总DNA酶解和自连接后,针对慢病毒载体的特点在LTR附近设计一组特异的PCR引物,优化半巢式PCR的各种参数,提高整合位点序列克隆的效率。结果:克隆了分别携带绿色荧光蛋白(GFP)和转铁蛋白(TF)基因的慢病毒介导的转基因小鼠家系7只小鼠中10个外源基因整合位点序列。结论:本方法可用于慢病毒介导的转基因小鼠整合位点序列的克隆,为分析整合位点与外源基因表达之间的关系等提供了科学依据。  相似文献   

2.
φC31整合酶可高效介导外源基因特异、稳定地与哺乳动物基因组发生重组反应.基因组中被整合的住点为假attP位点.运用接头PCR的方法对φC31整合酶介导的含有attB序列及表达绿色荧光蛋白(GFP)的载体在牛基因组中的一个新的特异整合位点(假attP位点)进行扩增.并且显示接头PCR技术在克隆与已知序列相邻的未知旁侧序列上其具有高效、特异、灵敏等特点.  相似文献   

3.
玉米是我国第一大作物,在保障我国粮食安全中发挥重要作用。通过转基因技术培育具有抗病虫等性状的转基因玉米新品种,可有效减少产量损失。培育的转基因玉米需要鉴定外源基因整合位点,为转基因玉米的安全性评价提供重要依据。以一个抗虫转基因玉米事件IE34为材料,采用热不对称PCR(TAIL-PCR)和遗传定位方法,鉴定外源基因整合位点及旁侧序列。通过TAIL-PCR得到一段长度为776 bp的玉米基因组序列。分别在旁侧序列和外源基因上游序列设计特异性引物,建立了转基因玉米事件特异性的PCR鉴定方法。将旁侧序列在MaizeGDB中进行比对分析,发现此序列是重复序列而且存在于多条染色体上。构建转基因玉米IE34与自交系B73的F2代遗传分离群体,通过BSR-Seq方法确定外源基因整合在玉米第5染色体短臂2.32-2.70Mb区间内。通过精细定位将外源基因整合位点缩小在第5染色体2.35-2.61 Mb约260 kb的区间内。本研究结果表明,对于整合位点旁侧序列复杂的转基因事件,TAIL-PCR结合遗传定位方法能够有效鉴定外源基因的整合位点。  相似文献   

4.
以转基因小麦B73-6-1为研究对象,通过染色体步行技术,成功分离到B73-6-1上pAHC25质粒外源基因插入位点的3'端旁侧序列,其扩增片段覆盖了转化载体及转基因小麦基因组旁侧序列。同时根据旁侧序列设计引物,建立品系特异性定性PCR检测方法,以典型的转基因作物证明该方法检测B73-6-1具有高特异性。该方法特异性好、灵敏度高, 可快速、准确、高效地检测转基因小麦B73-6-1品种。  相似文献   

5.
通过RT-PCR证实PLUNC基因在小鼠鼻咽部具有相对特异性表达。进一步用染色体步移的方法克隆该基因5′端旁侧序列847bp,网上分析结果提示此序列具有调控活性,体外报道基因的研究亦证实这一结果。进一步的研究表明,其核心调控区位于转录起始位点上游200bp之内。这一工作将为构建鼻咽癌转基因动物提供良好的前提。  相似文献   

6.
外源性人TIMP-1基因在转基因小鼠染色体上的整合及定位   总被引:1,自引:0,他引:1  
为探讨外源基因人基质金属蛋白酶组织抑制物-1(human tissue inhibitor of metalloproteinase-1, hTIMP-1)基因在转基因小鼠家系染色体上的整合和精确定位,应用Southrn印迹检测外源基因在染色体上整合的位点及拷贝数.结果表明,外源基因是以单拷贝、单位点形式整合;应用荧光原位杂交(fluorescence in situ hybridization, FISH)技术检测F4~F20代转基因小鼠中外源基因的整合.结果证明,该家系转基因小鼠自F4代起是纯合子,外源基因整合在17号染色体E区;反向PCR法(Inverse PCR, IPCR)克隆出约3.8 kb外源基因整合位点处的侧翼序列.分析表明,外源基因整合在17号染色体E1.3区,ALK(anaplastic lymphoma kinase, ALK)基因第23个内含子区域.结果提示,获得的转基因小鼠为纯系,外源基因hTIMP-1已稳定整合在转基因小鼠染色体上,并能遗传给后代.  相似文献   

7.
慢病毒载体已被广泛用于将外源DNA转移到人类细胞中治疗各种遗传疾病。慢病毒载体可以整合到宿主基因组中,但整合位点通常不可预测,这可能会增加其治疗效果的不确定性。随着基因及细胞疗法的广泛应用,监管机构出台了一系列技术指导文件,以确保产品持续的安全性。整合位点分析(integration site analysis,ISA)是通过表征基因治疗载体的整合图谱来评估其生物安全性,也是转基因细胞进行克隆跟踪的关键工具。概述了用于逆转录病毒整合位点的技术演变,以及信息分析工具的优势和发展趋势,总结了减低病毒随机整合至基因组中的应对策略,以期为慢病毒载体的整合位点分析检测和细胞治疗产品新药临床试验安全性评估提供参考。  相似文献   

8.
9.
中枢神经系统特异性表达Cre重组酶的转基因小鼠   总被引:1,自引:0,他引:1  
绳纪坡  侯宁  程萱  杨晓  邓继先 《遗传学报》2004,31(12):1337-1343
利用从129sv小鼠基因组文库克隆得到的1.8kb的胶质细胞原纤维酸性蛋白(GFAP)基因的5′端调控序列,构建了含有2个β—珠蛋白绝缘子、GFAP5′端调控区、Cre基因和人生长激素基因(hGH)polyA的转基因载体pGFAP—Cre—hGH。以显微注射的方法将7.6kb的转基因片段pGFAP—Cre—hGH引入191枚小鼠基因组受精卵,其中176枚分别移植至8只假孕母鼠的输卵管中使其发育,共获得子代小鼠25只。经PCR和Southern杂交鉴定其中7只小鼠基因组上整合有Cre基因,整合率为28%。用整合有Cre基因的转基因小鼠与基因组上整合有LoxP位点和LacZ表达框的ROSA26鼠杂交,以检测Cre酶的活性、组织特异性及其介导的两个LoxP位点间的重组。LacZ染色结果表明,GFAP—Cre转基因小鼠只在中枢神经系统中表达Cre重组酶并能在体内成功介导LoxP位点间的重组。  相似文献   

10.
张新涛  于冬梅 《遗传学报》1998,25(6):491-498
构建了小鼠MT-Ⅱ基因的定位整合载体pMT-Ⅱ6.7,这是一个置换型载体,它包含了6.7kb的与MT-Ⅱ基因及其旁侧序列同源的序列。用电穿孔方法将这一载体转化入小鼠ES细胞Mespu22中,在G418R、GancR的双抗性克隆中,用PCR方法进行筛选,从104个克隆中获得26个阳性克隆;对这26个克隆进行核型分析表明,其中有2个克隆,即克隆5-2和8-4的核型(2n=40,XY)正常率很高,达到84%和88%;进一步用Southern杂交分析,结果证明,在MT-Ⅱ基因位点确实发生了定位整合事件。利用这两个克隆的细胞进行体内、体外分化实验表明,它们具有体内、体外分化能力,进一步进行了嵌合体的制作,现已获得用克隆8-4细胞制作的嵌合体小鼠。  相似文献   

11.
Transgenes can affect transgenic mice via transgene expression or via the so-called positional effect. DNA sequences can be localized in chromosomes using recently established mouse genomic databases. In this study, we describe a chromosomal mapping method that uses the genomic walking technique to analyze genomic sequences that flank transgenes, in combination with mouse genome database searches. Genomic DNA was collected from two transgenic mouse lines harboring pCAGGS-based transgenes, and adaptor-ligated, enzyme restricted genomic libraries for each mouse line were constructed. Flanking sequences were determined by sequencing amplicons obtained by PCR amplification of genomic libraries with transgene-specific and adaptor primers. The insertion positions of the transgenes were located by BLAST searches of the Ensembl genome database using the flanking sequences of the transgenes, and the transgenes of the two transgenic mouse lines were mapped onto chromosomes 11 and 3. In addition, flanking sequence information was used to construct flanking primers for a zygosity check. The zygosity (homozygous transgenic, hemizygous transgenic and non-transgenic) of animals could be identified by differential band formation in PCR analyses with the flanking primers. These methods should prove useful for genetic quality control of transgenic animals, even though the mode of transgene integration and the specificity of flanking sequences needs to be taken into account.  相似文献   

12.
转Xa21基因水稻中T-DNA整合的遗传定位   总被引:3,自引:0,他引:3  
利用转抗白叶枯病基因Xa21的水稻材料,通过TAIL-PCR方法扩增T-DNA整合的侧翼序列。从中筛选属于水稻基因组DNA的T-DNA整合的侧翼序列作为探针,将外源基因整合位点定位到窄叶青/京系17DH群体构建的水稻分子连锁图谱上。共获得属于水稻基因组DNA的T-DNA侧翼序列22个,其中的19个序列在定位群体的两个亲本之间显示RFLP多态性,分别定位在水稻基因组的第3,4,5,7,9,10,11和12染色体上。带有转基因Xa21的T-DNA整合的定位为研究外源基因在不同染色体位点的位置效应和稳定遗传打下基础。  相似文献   

13.
Transgenic mice carrying bovine satellite DNA IV were obtained. The size of the transgene integrated into the mouse genome was approximately 390 kb (about 100 transgene copies) as determined by a semiquantitative PCR. Restriction analysis with isoschizomeric restrictases HpaII and MspI, showed that the alien DNA was methylated. In the genome of a transgenic founder male, two integration sites for satellite DNA IV were revealed by in situ hybridization and in situ PCR. These sites are situated on two different chromosomes: in pericentromeric heterochromatin and within a chromosomal arm. In transgenic mice, de novo formation of heterochromatin regions (C-block and the CMA3 disk within the centromeric heterochromatin of another chromosome) was revealed by C-banding and staining with chromomycin A3. This formation is not characteristic of mice, because their chromosomes normally contain no interstitial C-blocks or sequences intensely stained by chromomycin A3.  相似文献   

14.
The genetic loci and phenotypic effects of the transgene Xa21, a bacterial blight (BB) resistance gene cloned from rice, were investigated in transgenic rice produced through an Agrobacterium-mediated transformation system. The flanking sequences of integrated T-DNAs were isolated from Xa21 transgenic rice lines using thermal asymmetric interlaced PCR. Based on the analysis of 24 T-DNA- Xa21 flanking sequences, T-DNA loci in rice could be classified into three types: the typical T-DNA integration with the definite left and right borders, the T-DNA integration linked with the adjacent vector backbone sequences and the T-DNA integration involved in a complicated recombination in the flanking sequences. The T-DNA integration in rice was similar to that in dicotyledonous genomes but was significantly different from the integration produced through direct DNA transformation approaches. All three types of integrated transgene Xa21 could be stably inherited and expressed the BB resistance through derived generations in their respective transgenic lines. The flanking sequences of the typical T-DNA integration consisted of actual rice genomic DNA and could be used as probes to locate the transgene on the rice genetic map. A total of 15 different rice T-DNA flanking sequences were identified. They displayed restriction fragment length polymorphisms (RFLPs) between two rice varieties, ZYQ8 and JX17, and were mapped on rice chromosomes 1, 3, 4, 5, 7, 9, 10, 11 and 12, respectively, by using a double haploid population derived from a cross between ZYQ8 and JX17. The blast search and homology comparison of the rice T-DNA flanking sequences with the rice chromosome-anchored sequence database confirmed the RFLP mapping results. On the basis of genetic mapping of the T-DNA- Xa21 loci, the BB resistance effects of the transgene Xa21 at different chromosome locations were investigated using homozygous transgenic lines with only one copy of the transgene. Among the transgenic lines, no obvious position effects of the transgene Xa21 were observed. In addition, the BB resistance levels of the Xa21 transgenic plants with different transgene copy numbers and on different genetic backgrounds were also investigated. It was observed that genetic background (or genome) effects were more obvious than dosage effects and position effects on the BB resistance level of the transgenic plants.  相似文献   

15.
When transgenic mice are created by microinjection of DNA into the pronucleus, the sites of DNA integration into the mouse genome cannot be predicted. Most methods based on polymerase chain reaction (PCR) that have been used for determining the integration site of foreign DNA into a genome require specific reagents and/or complicated manipulations making routine use tedious. In this report we demonstrate the use of a PCR-based method-TAIL-PCR (Thermal Asymmetric Interlaced PCR) which relies on a series of PCR amplifications with gene specific and degenerate primers to reliably amplify the integration sites. By way of example, using this approach, three separate integration sites were found (on chromosomes 8, 15 and 17) in one transgenic founder. As the sites on chromosomes 8 and 15 failed to segregate in any subsequent progeny, whole chromosome paints were done to determine if translocations involving chromosomes 8 and 15 occurred at the time of transgene integration. Whole chromosome painting could not detect translocations, suggesting that the rearrangements likely involve only small stretches of chromosomes. Site-specific primers were used to identify the progeny carrying only one integration site; these mice were then used as sub-founders for subsequent breedings. Integration site specific primers were used to distinguish homozygous progeny from heterozygotes. TAIL-PCR thus provides an easy and reliable way to (1) identify multiple integration sites in transgenic founders, (2) select breeders with one integration site, and (3) determine zygosity in subsequent progeny. Use of this strategy may also be considered to map integration sites in situations of unexpected phenotype or embryonic lethality while creating new transgenic mice.  相似文献   

16.
Li R  Wu D  Li H  Xu C  Wang H  Zhao Y  Cai Y  Wei Q  Du B 《Analytical biochemistry》2011,(2):196-201
Identifying a good transgenic event from the pool of putative transgenics is crucial for further characterization. In transgenic plants, the transgene can integrate in either single or multiple locations by disrupting the endogenes and/or in heterochromatin regions causing the positional effect. Apart from this, to protect the unauthorized use of transgenic plants, the signature of transgene integration for every commercial transgenic event needs to be characterized. Here we show an affinity-based genome walking method, named locus-finding (LF) PCR (polymerase chain reaction), to determine the transgene flanking sequences of rice plants transformed by Agrobacterium tumefaciens. LF PCR includes a primary PCR by a degenerated primer and transfer DNA (T-DNA)-specific primer, a nested PCR, and a method of enriching the desired amplicons by using a biotin-tagged primer that is complementary to the T-DNA. This enrichment technique separates the single strands of desired amplicons from the off-target amplicons, reducing the template complexity by several orders of magnitude. We analyzed eight transgenic rice plants and found the transgene integration loci in three different chromosomes. The characteristic illegitimate recombination of the Agrobacterium sp. was also observed from the sequenced integration loci. We believe that the LF PCR should be an indispensable technique in transgenic analysis.  相似文献   

17.
转基因抗虫棉Bt基因插入区碱基组成分析   总被引:12,自引:0,他引:12  
利用TAIL-PCR的方法克隆不同来源的转基因抗虫棉中外源基因插入区的侧翼序列并对其进行序列和结构分析,结果表明,同一个较基因的单构自交得到的不同株系中外源基因插入区的两侧DNA序列完全相同,不同的转基因抗虫棉虫的外源基因插入位置各不相同,不同来源的转基因品种外源基因插入的上游侧翼片段含有一段残留质粒片段,外源基因插入的下游侧翼片段为富含AT碱基结构,其中泗棉3号转基因抗虫品系中下游侧翼片段的AT碱基高达92%,Southern杂交结果显示这些侧翼序列为高AT含量的多拷贝序列,序列中没有发现拓扑异构酶的结合位点。  相似文献   

18.
红系特异的GFP基因在转基因小鼠中的整合和表达   总被引:4,自引:0,他引:4  
应用荧光定量PCR技术对由位点控制区LCR的HS2元件和 β 珠蛋白基因启动子指导的红系特异表达绿色荧光蛋白 (GFP)基因的转基因小鼠中外源基因拷贝数进行测定 ,使用荧光显微镜和流式细胞仪检测小鼠外周血中GFP的表达水平 ,并运用荧光原位杂交技术 (FISH)确定了其中两只转基因小鼠中外源基因的整合位点 ,结果表明 :在转基因小鼠中外源基因的拷贝数各不相同且相差较大 ,而且拷贝数与GFP基因的表达量之间未呈现出相关性 ;FISH分析确定出两只转基因小鼠的外源基因整合于不同的染色体上 ;杂交信号的强弱与拷贝数的多少相一致  相似文献   

19.
The random germline integration of genetically engineered transgenes has been a powerful technique to study the role of particular genes in variety of biological processes. Although the identification of the transgene insertion site is often not essential for functional analysis of the transgene, identifying the site can have practical benefit. Enabling one to distinguish between animals that are homozygous or hemizygous for the transgene locus could facilitate breeding strategies to produce animals with a large number of genetic markers. Furthermore, founder lines generated with the same transgene construct may exhibit different phenotypes and levels of transgene expression depending on the site of integration. The goal of this report was to develop a rapid protocol for the identification and verification of transgene insertion sites. To identify host genomic sequences at the coagulation Factor X transgene integration site, DNA from a tail snip of the transgenic mouse was digested with NcoI and circularized using T4 DNA ligase. Using appropriately positioned PCR primers annealing to a transgene fragment distal to a terminal transgene restriction site (NcoI), one could amplify a fragment containing the transgene terminal region and extending into the flanking genomic sequence at the insertion site. DNA sequence determination of the amplicon permitted identification of the insertion site using a BLASTN search. FISH analysis of a metaphase spread of primary fibroblasts derived from the transgenic mouse was consistent with the identification of insertion site near the end of mouse chromosome 14. Identification of transgene insertion sites will facilitate genotyping strategies useful for the construction of mice with multiple engineered genetic markers and to distinguish among different founder lines generated by the same transgene. Furthermore, identification of the insertion site is necessary to analyze unexpected phenotypes that might be caused by insertional inactivation of an endogenous gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号