首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
A cDNA encoding mature human parathyroid hormone (hPTH) was expressed in Saccharomyces cerevisiae, after fusion to the prepro region of yeast mating factor alpha (MF alpha). Radioimmunoassay showed high levels of hPTH immunoreactive material in the growth medium (up to 10 micrograms/ml). More than 95% of the immunoreactive material was found extracellularly as multiple forms of hormone peptides. Three internal cleavage sites were identified in the hPTH molecule. The major cleavage site, after a pair of basic amino acids (aa) (Arg25Lys26 decreases Lys27), resembles that recognized by the KEX2 gene product on which the MF alpha expression-secretion system depends. The use of a protease-deficient yeast strain and the addition of high concentrations of aa to the growth medium, however, not only changed the peptide pattern, but also resulted in a significant increase in the yield of intact hPTH (1-84) (more than 20% of the total amount of immunoreactive material). The secreted hPTH (1-84) migrates like a hPTH standard in two different gel-electrophoretic systems, co-elutes with standard hPTH on reverse-phase high-performance liquid chromatography, reacts with two hPTH antibodies raised against different parts of the peptide, has a correct N-terminal aa sequence, and has full biological activity in a hormone-sensitive osteoblast adenylate cyclase assay.  相似文献   

2.
Human parathyroid hormone (hPTH) was expressed and secreted in Saccharomyces cerevisiae. In batch fermentations performed at pH = 5.6, 6.5, 7.2 and 7.5, optimal production of hPTH (12.1 mg/l) was obtained at pH 7.2 after 24 h of culture. At pH 5.6, most of secreted hPTH was degraded. Proteolysis of hPTH was significantly decreased by increasing the culture pH.  相似文献   

3.
Human pancreatic secretory trypsin inhibitor (PSTI) cDNA was expressed in Saccharomyces cerevisiae using the yeast acid phosphatase PHO5 promoter. The product encoded by the PSTI-coding cDNA was correctly processed in yeast cells, and the PSTI molecules were efficiently secreted into the medium. The amino acid composition and the N-terminal amino acid sequence of the secreted PSTI molecules were identical to those of the authentic PSTI polypeptides from human pancreas, and the product exhibited trypsin-inhibitory activity.  相似文献   

4.
When human parathyroid hormone (hPTH) is expressed as a secretory product in yeast, the main problem is the aberrant proteolytic cleavage that reduces the yield of intact protein. To overcome this problem, we developed an hPTH expression system using a host strain in which the YAP3 gene encoding yeast aspartic protease 3 (YAP3) was disrupted. After 48 h of culture, most of the hPTH secreted by the yap3 disruptant remained intact, whereas more than 90% of the hPTH secreted by the wild-type strain was cleaved. When the authentic hPTH was incubated in each of the culture supernatants of untransformed yap3 disruptant and wild-type strain, the proteolysis proceeded much more slowly in the culture supernatant of yap3 disruptant than in that of the wild type. The extent of hPTH proteolysis was also significantly reduced by the addition of pepstatin A, a specific aspartic protease inhibitor. The results suggest that YAP3 is involved in the internal cleavage of hPTH expressed in yeast. The correct processing of the intact hPTH secreted in the yap3 disruptant demonstrates that the yeast mutant lacking the YAP3 activity is a suitable host for the high-level expression of intact hPTH. Received: 8 December 1997 / Received last revision: 3 March 1998 / Accepted: 19 April 1998  相似文献   

5.
A system for the controlled expression of a foreign gene in Saccharomyces cerevisiae by temperature and/or inorganic phosphate (Pi) concentration in the medium was constructed. A DNA fragment bearing the promoter of the PHO84 gene, which encodes a Pi transporter of S. cerevisiae and is derepressed by Pi starvation, was used as promoter. When a cDNA fragment encoding the human lysozyme (h-lysozyme) gene connected with the PHO84 promoter was ligated into a YEp vector, a maximum of 4.5 mg/l of the enzyme was secreted from the host cells in low-Pi medium. When a temperature-sensitive pho81 mutant was used as the host with this vector, 2.6 mg/l of h-lysozyme was secreted in low-Pi medium at 25°C and its production was turned off at 37°C.  相似文献   

6.
Bäumer M  Braus GH  Irniger S 《FEBS letters》2000,468(2-3):142-148
Sister chromatid separation and mitotic exit are triggered by the anaphase-promoting complex (APC/C) which is a multi-subunit ubiquitin ligase required for proteolytic degradation of various target proteins. Cdc20 and Cdh1 are substrate-specific activators of the APC/C. It was previously proposed that Cdh1 is essential for proteolysis of the yeast mitotic cyclin Clb2. We show that Clb2 proteolysis is triggered by two different modes during mitosis. A fraction of Clb2 is degraded during anaphase in the absence of Cdh1. However, a second fraction of Clb2 remains stable during anaphase and is degraded in a Cdh1-dependent manner as cells exit from mitosis. Most of cyclin Clb3 is degraded independently of Cdh1. Our data imply that degradation of mitotic cyclins is initiated by a Cdh1-independent mechanism.  相似文献   

7.
In order to develop a production process for carboxypeptidase Y (CPY, yeast vacuolar protease) secreted by Saccharomyces cerevisiae KS58-2D, medium composition, culture conditions, and expression systems were investigated. We found that the addition of histidine to thiamine-free medium, in which CPY production was almost negligible, raised the intracellular thiamine level, resulting in the increase of CPY production. On the basis of the choice of an expression system that uses an inducible GAL10 promoter, reassessment of histidine concentration in the medium, and optimization of the pH level during cultivation (pH 6.5), active CPY was secreted in a quantity of over 400 mg/l, which was more than tenfold that higher than that previously reported. The process developed could be easily scaled-up to industrial-scale fermentation. Received: 16 January 1998 / Received revision: 16 February 1998 / Accepted: 27 February 1998  相似文献   

8.
The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1‐34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of 15N‐enriched human parathyroid hormone, 15N PTH(1‐34), generated via a plasmid vector that gives reasonable yield, low‐cost protease cleavage (leaving the native N‐terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
10.
Isolation of secretory vesicles from Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
Purification of secretory vesicles from Saccharomyces cerevisiae has been hindered because these organelles normally represent a small proportion of cellular membranes. In the yeast secretory mutant sec1, secretory vesicles accumulate intracellularly in large quantities. Using a sec1 strain we have devised a procedure for the partial purification of these vesicles. The purification employs differential and density gradient centrifugations and an electrophoretic separation of membranes. The fractions obtained from this procedure are enriched for secretory vesicles at least fivefold over other cellular membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane fractions reveals a distinct set of polypeptides associated with secretory vesicles.  相似文献   

11.
Phospholipase A1 (PLA1) is a hydrolytic enzyme that catalyzes the removal of the acyl group from position 1 of lecithin to form lysolecithin. The PLA1 gene, which had been cloned from Aspergillus oryzae, was expressed in Saccharomyces cerevisiae and A. oryzae. Through the modification of the medium composition and the feeding conditions of substrate, the production level of PLA1 by S. cerevisiae was increased to a level fivefold higher than that indicated in a previous report. In the case of A. oryzae, introduction of multicopies of PLA1 expression units, and the morphological change from the pellet form to the filamentous form were effective for the enhancement of PLA1 production. We succeeded in producing 3,500 U/ml of PLA1 using an industrial-scale fermentor.  相似文献   

12.
13.
BackgroundAlthough the budding yeast, Saccharomyces cerevisiae, produces ethanol via alcoholic fermentation, high-concentration ethanol is harmful to yeast cells. Severe ethanol stress (> 9% v/v) inhibits protein synthesis and increases the level of intracellular protein aggregates. However, its effect on proteolysis in yeast cells remains largely unknown.MethodsWe examined the effects of ethanol on proteasomal proteolysis in yeast cells through the cycloheximide-chase analysis of short-lived proteins. We also assayed protein degradation in the auxin-inducible degron system and the ubiquitin-independent degradation of Spe1 under ethanol stress conditions.ResultsWe demonstrated that severe ethanol stress strongly inhibited the degradation of the short-lived proteins Rim101 and Gic2. Severe ethanol stress also inhibited protein degradation in the auxin-inducible degron system (Paf1-AID*-6FLAG) and the ubiquitin-independent degradation of Spe1. Proteasomal degradation of these proteins, which was inhibited by severe ethanol stress, resumed rapidly once the ethanol was removed. These results suggested that proteasomal proteolysis in yeast cells is reversibly inhibited by severe ethanol stress. Furthermore, yeast cells pretreated with mild ethanol stress (6% v/v) showed proteasomal proteolysis even with 10% (v/v) ethanol, indicating that yeast cells acquired resistance to proteasome inhibition caused by severe ethanol stress. However, yeast cells failed to acquire sufficient resistance to severe ethanol stress-induced proteasome inhibition when new protein synthesis was blocked with cycloheximide during pretreatment, or when Rpn4 was lost.Conclusions and general significanceOur results provide novel insights into the adverse effects of severe ethanol stress on proteasomal proteolysis and ethanol adaptability in yeast.  相似文献   

14.
T Gilon  O Chomsky    R G Kulka 《The EMBO journal》1998,17(10):2759-2766
Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes.  相似文献   

15.
Reactive oxygen species, generated as normal by-products of aerobic metabolism or due to cellular stress, oxidize molecules and cause cell death by apoptosis. The accumulation of oxidized proteins is a hallmark of aging and a number of aging diseases. Oxidation can impair protein function as the proteins are unfolded leading to an increase of protein hydrophobicity and often resulting in the formation of toxic aggregates. The yeast Saccharomyces cerevisiae has been used as a eukaryotic model system to analyze the molecular mechanisms of oxidative stress protection. This paper reviews how the identification in yeast of specific damaged proteins has provided new insights into mechanisms of cytotoxicity and highlights the role of repair and degradative processes, including vacuolar/lysosomal and proteasomal proteolysis, in housekeeping after protein oxidative damage.  相似文献   

16.
17.
In order to develop a large-scale fermentation process for the production of human proinsulin in yeast, the intra-cellular expression of a human superoxide dismutase-human proinsulin fusion product (SOD-PI) has been studied. The expression of SOD-PI in Saccharomyces cerevisiae is regulated by a hybrid alcohol dehydrogenase 2/glyceraldehyde-3-phosphate dehydrogenase promoter. The promoter is repressed by glucose and derepressed by depletion of glucose. Although the genetic stability of the construction is shown to be poor under product-inducing conditions, it is demonstrated in shake flask experiments that a stable expression potential can be maintained in a complex medium for more than 60 generations by maintaining excess glucose throughout the cultivations. These results have been confirmed in continuous cultures in chemostat and turbidostat experiments. Addition of the glucose analogs glucosamine, 2-desoxyglucose, methylglucose, and thioglucose also leads to repression of SOD-PI formation. The analogs, however, are not suitable for improving genetic stability during propagation because of growth inhibition. In batch fermentation experiments in a complex medium at 30 degrees C, it has been demonstrated that initial glucose concentrations up to 50 g/L result in high specific SOD-PI yields giving an overall yield of up to 700 mg SOD-PI/L whereas higher glucose concentrations lead to both lower specific and overall yields due to depletion of critical medium components in the production period. In fed-batch experiments at 30 degrees C it has been possible to obtain high specific SOD-PI yields even at high biomass concentrations by feeding glucose at a constant rate of 1.5 g/L/h for 40 h followed by a feeding of ethanol at 1.0 g/L/h for 24 h, thus giving an overall yield of 1200 mg/L. Decreasing the temperature from 30 to 26 degrees C leads to improved yields in batch as well as fed-batch experiments. The optimized fed-batch fermentation process which is suitable to be scaled up to the cubic meter level has been tested in 200-L fermentations resulting in yields of more than 1500 mg/L of the fusion protein which conveniently can be used as a precursor in the production of recombinant human proinsulin.  相似文献   

18.
19.
Fatty acid-acylated proteins in secretory mutants of Saccharomyces cerevisiae.   总被引:12,自引:0,他引:12  
Yeast secretory (sec) mutants that are blocked in the transport of secretory proteins and accumulate membrane organelles were used to study the biosynthesis of fatty acid-acylated proteins. Four proteins were labeled with [3H]palmitate in sec mutants accumulating endoplasmic reticulum membranes. Three of these (molecular weights approximately equal to 20,000, 50,000, and 120,000) were N-linked glycoproteins, based on their ability to be labeled with [3H]mannose and their sensitivity to endoglycosidase H. The fourth protein (molecular weight approximately equal to 30,000) also was labeled with [3H]mannose but was insensitive to endoglycosidase H; it appeared to contain O-linked sugars. In sec mutants accumulating Golgi membranes or post-Golgi vesicles, a 35-kilodalton protein was labeled with [3H]palmitate. Analysis of Staphylococcus aureus protease V8 digests and pulse-chase experiments indicated that the 30-kilodalton protein was a precursor of 35 kilodaltons. None of these proteins was labeled with [3H]palmitate in a sec mutant that blocked the penetration of nascent polypeptides into endoplasmic reticulum; thus, acylation occurred in endoplasmic reticulum. All four proteins could be recovered from fractions enriched for yeast membranes. Fatty acids were not released from proteins by boiling in sodium dodecyl sulfate or extraction with organic solvents but were recovered as methyl esters after proteins were treated with KOH-methanol, a reaction characteristic of an acyl ester linkage.  相似文献   

20.
Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N‐acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L‐tryptophan hydroxylase, a 5‐hydroxy‐L‐tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O‐methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co‐factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L?1 in a 76h fermentation using simulated fed‐batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号