首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In this study we determined the effect of NaCl concentration during sporulation (0 or 3.0% [wt/vol] added NaCl) and subsequent growth (0 or 2.0% [wt/vol] added NaCl) on the distributions of times associated with various stages of the lag phase of individual spores of nonproteolytic Clostridium botulinum strain Eklund 17B. The effects of NaCl on the probability of germination and the probability of subsequent growth were also determined. Spore populations exhibited considerable heterogeneity at all stages of lag phase for each condition tested. Germination time did not correlate strongly with the times for later stages in the lag phase, such as outgrowth and doubling time. Addition of NaCl to either the sporulation or growth media increased the mean times for, and variability of, all the measured stages of the lag phase (germination, emergence, time to one mature cell, and time to first doubling). There was a synergistic interaction between the inhibitory effects of NaCl in the sporulation medium and the inhibitory effects of NaCl in the subsequent growth medium on the total lag time and each of its stages. Addition of NaCl to either the sporulation medium or the growth medium reduced both the probability of germination and the probability of a germinated spore developing into a mature cell, but the interaction was not synergistic. Spores formed in medium with added NaCl were not better adapted to subsequent growth in suboptimal osmotic conditions than spores formed in medium with no added NaCl were. Knowledge of the distribution of lag times for individual spores and quantification of the biovariability within lag time distributions may provide insight into the underlying mechanisms and can be used to improve predictions of growth in food and to refine risk assessments.  相似文献   

4.
5.
The effect of combinations of temperature (2°, 3°, 4°, 5°, 8° and 10°C), pH (5·0–7·2) and NaCl (0·1–5·0% w/w) on growth from spores of non-proteolytic Clostridium botulinum types B, E and F was determined using a strictly anaerobic medium. Inoculated media were observed weekly for turbidity, and tests were made for the presence of toxin in conditions that approached the limits of growth. Growth and toxin production were detected at 3°C in 5 weeks, at 4°C in 3/4 weeks and at 5°C in 2/3 weeks. The resulting data define growth/no growth boundaries with respect to low temperature, pH, NaCl and incubation time. This is important in assessment of the risk of growth and toxin production by non-proteolytic Cl. botulinum in minimally processed chilled foods.  相似文献   

6.
7.
The addition of various amounts of acetic acid to pureed cucumbers inoculated with Clostridium botulinum spores has shown that outgrowth is inhibited at pH 4.8 but not at pH 5.0. Inoculation experiments with whole cucumbers showed that as little as 0.9% acetic acid in the brine was sufficient to prevent outgrowth from spore inocula as high as 10(6)/cucumber. It was further shown that the rapid rate of acetic acid penetration into fresh-pack pickles prevents the growth of any C. botulinum spores that may be present.  相似文献   

8.
Clostridium-botulinum type A and type B spores were stored in tomato juice (pH 4.2) and citric acid-phosphate buffer (pH 4.2) at 4, 22, and 32 degrees C for 180 days. The spore count was determined at different intervals over the 180-day storage period. There was no significant decrease in the number of type A spores in either the tomato juice or citric acid-phosphate buffer stored for 180 days at 4, 22, and 32 degrees C. The number of type B spores did not decrease when storage was at 4 degrees C, but there was an approximately 30% decrease in the number of spores after 180 days of storage at 22 and 32 degrees C.  相似文献   

9.
Clostridium-botulinum type A and type B spores were stored in tomato juice (pH 4.2) and citric acid-phosphate buffer (pH 4.2) at 4, 22, and 32 degrees C for 180 days. The spore count was determined at different intervals over the 180-day storage period. There was no significant decrease in the number of type A spores in either the tomato juice or citric acid-phosphate buffer stored for 180 days at 4, 22, and 32 degrees C. The number of type B spores did not decrease when storage was at 4 degrees C, but there was an approximately 30% decrease in the number of spores after 180 days of storage at 22 and 32 degrees C.  相似文献   

10.
The addition of various amounts of acetic acid to pureed cucumbers inoculated with Clostridium botulinum spores has shown that outgrowth is inhibited at pH 4.8 but not at pH 5.0. Inoculation experiments with whole cucumbers showed that as little as 0.9% acetic acid in the brine was sufficient to prevent outgrowth from spore inocula as high as 10(6)/cucumber. It was further shown that the rapid rate of acetic acid penetration into fresh-pack pickles prevents the growth of any C. botulinum spores that may be present.  相似文献   

11.
Oxidation-reduction potential (Eh) levels were measured and standardized to pH (Eh7) for Trypticase soy broth containing various concentrations of reducing agents. Prereduced Trypticase soy broth with no added reducing agents exhibited a potential of -141 mV. Ascorbic acid at 0.2 to 0.005% and sodium thioglycolate at concentrations below 0.05% produced an Eh7 higher than the prereduced Trypticase soy broth containing no added reducing agents. The addition of cysteine hydrochloride,2-mercaptoethanol, and sodium formaldehyde sulfoxylate to prereduced Trypticase soy broth resulted in a reduction of Eh7 compared to the system without added reducing agents. The order of relative reducing intensity (from highest to lowest) for the reducing agents when comparing molar concentration was: sodium formaldehyde sulfoxylate,2-mercaptoethanol, cysteine hydrochloride, sodium thioglycolate, and ascorbic acid. Optimal growth of the test organism occurred at low Eh7 and low concentration of the reducing agents. A direct correlation existed between growth of the test organism and -Eh7 x -log concentration of the reducing agent.  相似文献   

12.
Oxidation-reduction potential (Eh) levels were measured and standardized to pH (Eh7) for Trypticase soy broth containing various concentrations of reducing agents. Prereduced Trypticase soy broth with no added reducing agents exhibited a potential of -141 mV. Ascorbic acid at 0.2 to 0.005% and sodium thioglycolate at concentrations below 0.05% produced an Eh7 higher than the prereduced Trypticase soy broth containing no added reducing agents. The addition of cysteine hydrochloride,2-mercaptoethanol, and sodium formaldehyde sulfoxylate to prereduced Trypticase soy broth resulted in a reduction of Eh7 compared to the system without added reducing agents. The order of relative reducing intensity (from highest to lowest) for the reducing agents when comparing molar concentration was: sodium formaldehyde sulfoxylate,2-mercaptoethanol, cysteine hydrochloride, sodium thioglycolate, and ascorbic acid. Optimal growth of the test organism occurred at low Eh7 and low concentration of the reducing agents. A direct correlation existed between growth of the test organism and -Eh7 x -log concentration of the reducing agent.  相似文献   

13.
Clostridium botulinum spores were sublethally damaged by exposure to 12 or 28 micrograms of available chlorine per ml for 2 min at 25 degrees C and pH 7.0. The damaging dose was 2.7 x 10(-6) to 3.1 x 10(-6) micrograms of available chlorine per spore. Damage was manifested by a consistent 1.6 to 2.4 log difference between the most probable number enumeration of spores (modified peptone colloid medium) and the colony count (modified peptone yeast extract glucose agar); this did not occur with control spores. Damaged spores could be enumerated by the colony count procedure. Germination responses were measured in several defined and nondefined media. Hypochlorite treatment altered the rate and extent of germination in some of the media. Calcium lactate (9 mM) permitted L-alanine (4.5 mM) germination of hypochlorite-treated spores in a medium containing 12 or 55 mM sodium bicarbonate, 0.8 mM sodium thiosulfate, and 100 mM Tris-hydrochloride (pH 7.0) buffer. Tryptose inhibited L-alanine germination of the spores. Treatments with hypochlorite and with hydrogen peroxide (7%, 25 degrees C, 2 min) caused similar enumeration and germination responses, indicating that the effect was due to a general oxidation phenomenon.  相似文献   

14.
15.
16.
17.
18.
19.
Heat treatment of spores of non-proteolytic Clostridium botulinum at 85°C for 120 min followed by enumeration of survivors on a medium containing lysozyme resulted in a 4.1 and 4.8 decimal reduction in numbers of spores of strains 17B (type B) and Beluga (type E), respectively. Only a small proportion of heated spores formed colonies on medium containing lysozyme; this proportion could be increased by treatments designed to increase the permeability of heated spores. The results indicate that the germination system in spores of non-proteolytic Cl. botulinum was destroyed by heating, that lysozyme could replace this germination system, and that treatments that increased the permeability of the spore coat could increase the proportion of heated spores that germinated on medium containing lysozyme. These results are important in relation to the assessment of heat-treatments required to reduce the risk of survival and growth of non-proteolytic Clostridium botulinum in processed (pasteurized) refrigerated foods for extended storage.  相似文献   

20.
Clostridium botulinum spores were sublethally damaged by exposure to 12 or 28 micrograms of available chlorine per ml for 2 min at 25 degrees C and pH 7.0. The damaging dose was 2.7 x 10(-6) to 3.1 x 10(-6) micrograms of available chlorine per spore. Damage was manifested by a consistent 1.6 to 2.4 log difference between the most probable number enumeration of spores (modified peptone colloid medium) and the colony count (modified peptone yeast extract glucose agar); this did not occur with control spores. Damaged spores could be enumerated by the colony count procedure. Germination responses were measured in several defined and nondefined media. Hypochlorite treatment altered the rate and extent of germination in some of the media. Calcium lactate (9 mM) permitted L-alanine (4.5 mM) germination of hypochlorite-treated spores in a medium containing 12 or 55 mM sodium bicarbonate, 0.8 mM sodium thiosulfate, and 100 mM Tris-hydrochloride (pH 7.0) buffer. Tryptose inhibited L-alanine germination of the spores. Treatments with hypochlorite and with hydrogen peroxide (7%, 25 degrees C, 2 min) caused similar enumeration and germination responses, indicating that the effect was due to a general oxidation phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号