首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A cultivation system has been developed for Penicillium urticae which yields 'microcycle' conidiation in submerged culture. Spherical growth of spores was initiated by incubation at 37 degrees C in a growth-favoring medium. Transfer of these enlarged spores to a nitrogen-poor medium at 35 degrees C results in synchronous germination and limited outgrowth followed by roughly synchronous conidiation. A study of the conidiation stage showed that a phialide and an immature conidium began to form at the tip of all germ tubes 18 h after the temperature shift. By 24 h additional phialides commonly appeared as a branch near the tip of the germ tube and the more mature conidia exhibited increasing refractility. The earliest ultrastructural signs of conidiation were various round invaginations in the plasma membrane and a thickening and rounding of the new spore wall which appeared as an inner extension of the phialide cell wall. Upon segregation of the conidium from the phialide cell by conidial wall formation, 'trench-like' invaginations gradually appeared in the plasma membrane and a disorganized rodlet pattern was formed on the outer surface of the maturing conidial wall. Continued maturation involved the formation of chains of conidia and phialide senescence which was characterized by a general degradation of intracellular structure. A comparison with standard surface and submerged culture conidiation indicated that 'microcycle' conidiation, while less prolific, was essentially identical.  相似文献   

2.
A cultivation system has been developed for Penicillium urticae (NRRL 2159A) which yields 'microcycle' conidiation in submerged culture. Spherical growth of spores was initiated by incubation at 37 degrees C in a growth-favoring medium. Transfer of these enlarged spores to a nitrogen-poor medium at 35 degrees C resulted in synchronous germination and limited outgrowth followed by roughly synchronous conidiation. An ultrastructural study of the spherical growth stage indicates a significant loss of cell envelope fine structure and a general increase in the number of cellular organelles. Loss of the complex pattern of rodlets on the spore surface, and the trench-like invaginations of the plasma membrane were most prominent. From an ultrastructural point of view these large spores (about 6 mum in diameter) appeared to be perfectly normal.  相似文献   

3.
Kikuma T  Arioka M  Kitamoto K 《Autophagy》2007,3(2):128-129
Filamentous fungi form aerial hyphae on solid medium, and some of these differentiate into conidiophores for asexual sporulation (conidiation). In the filamentous deuteromycete, Aspergillus oryzae, aerial hyphae are formed from the foot cells and some differentiate into conidiophores, which are composed of vesicles, phialides and conidia. Recently, we isolated the yeast ATG8 gene homologue Aoatg8 from A. oryzae, and visualized autophagy by the expression of an EGFP (enhanced green fluorescent protein)-AoAtg8 fusion protein and DsRed2 protein in this fungus. Furthermore, by constructing the Aoatg8 deletion and conditional mutants, we demonstrated that autophagy functions during the process of differentiation of aerial hyphae, conidiation and conidial germination in A. oryzae. Here, we discuss the contribution of autophagy towards the differentiation and germination processes in filamentous fungi.  相似文献   

4.
Microcycle conidiation in shaken cultures of Penicillium cyclopium M 79 was induced at 24 degrees C without any shock treatment. The occurrence of a microcycle depended on the presence of an organic acid (especially glutamic acid) in combination with glucose, low phosphate concentration, light and sufficient aeration. Absence of glucose and/or lowered aeration evoked vegetative growth. A synchronous and homogeneous microcycle required a certain relationship between the number of inoculated conidia and the concentration of the organic acid in the medium; the optimum was at 0.08 nmol acid per conidium. Higher values stimulated normal vegetative growth. A shortage or absence of the organic acid led to an atypical growth. The effect of organic acid can be partially replaced by addition of 2% (w/v) CaCO3. Addition of NH+4 in concentrations higher than 6 mM to cultures with glutamate or glutamine evoked vegetative growth.  相似文献   

5.
Conidiation of the entomopathogenic fungus Metarhizium acridum on agar media was investigated. M. acridum CQMa102 exhibits two different conidiation patterns on agar media: normal conidiation in which conidia are formed on extended hyphae and microcycle conidiation in which conidiation occurs directly after conidia germination. Microcycle conidiation resulted in a mass of conidia produced via budding by accelerated development at the inoculation site. The mean total conidial yield (conidiation at day 10) was 4–5-fold greater after microcycle conidiation than during normal conidiation. Insect pathology assays indicated that microcycle conidia produced on SYA agar were as effective as normal aerial conidia against the locust. Ultraviolet (UV)-resistance tests showed no significant differences between the two types of cell propagules. However, microcycle conidia were more heat resistant than normal aerial conidia, and accumulated higher levels of trehalose in response to heat induction compared to normal aerial conidia.  相似文献   

6.
Liu XH  Lu JP  Lin FC 《Autophagy》2007,3(5):472-473
Autophagy is a ubiquitous and evolutionarily conserved process found in all eukaryotic cells that allows for the degradation and recycling of old proteins and organelles. Starvation can induce autophagy, and autophagic pathway is an essential process for cellular function under starvation. In Magnaporthe grisea, starvation is one of the key induced factors for the germ tube tip to differentiate into an appressorium. Considering the importance of the rice blast fungus as a primary model for host-pathogen interaction, the role of autophagy in fungal development, appressorium turgor generation and pathogenicity of M. grisea via its role in organelle and protein turnover is a very significant subject.  相似文献   

7.
Microcycle conidiation and its genetic basis in Neurospora crassa.   总被引:3,自引:0,他引:3  
Some wild isolates of Neurospora show microcycle conidiation in liquid culture under continuous agitation. Macroconidia from agar-grown mycelial cultures germinated in liquid and the germlings spontaneously produced conidia with no intervening mycelial phase. Three types of microcycle conidiation were seen among progeny of N. crassa Vickramam A x N. crassa a wild-type: (1) multinucleate blastoconidia produced by apical budding and septation, (2) multinucleate arthroconidia produced by holothallic septation and disarticulation of cells, and (3) uninucleate microconidia produced directly from conidiogenous cells of the germlings. Two genes were identified which control specific patterns of microcycle conidiogenesis. A single gene mcb in linkage group VR near al-3 (3.2% recombination) controls blastoconidiation. This gene is epistatic to gene mcm located in linkage group IIL, very near ro-7 (1.4%). mcm controls both microconidiation and arthroconidiation depending on temperature. Strains of genotype mcm produce microconidia almost exclusively at 18-22 degrees C, but arthroconidia with few or no microconidia at 30 degrees C. Because they result in rapid and synchronized conidiation in liquid culture, the two genes should be useful for studies of developmental gene regulation. mcm makes it possible to obtain large quantities of pure microconidia rapidly for experimentation.  相似文献   

8.
Morels, fungi from the genus Morchella, are popular edible mushrooms. However, little knowledge of their asexual reproduction and inaccessible pure mitospores hamper illumination of their life cycle. Herein, we successfully induced conidiation, conidial germination and chlamydospore formation in pure culture of Morchella sextelata. Conidiation proceeded via four morphologically distinct stages: development of the conidiophore stalk, stalk branching, phialide differentiation, and conidium production. Terminal and intercalary chlamydospores were formed on conidial hyphae. The development of conidiophores occurred earlier, with more conidia produced, in cross-mating cultures than in single-spore cultures. Mature conidia were spherical and 2.5–8 μm in diameter, with a vast majority (nearly 99%) 2.5–5 μm in diameter. Each conidium contained one to three nuclei (80.2% conidia contained one nucleus, 19.1% contained two nuclei, and 0.7% contained three nuclei). The conidial nucleus diameter was 1–2 μm. The nuclear mitosis in detached conidia that was observed may benefit their colony initiation. Additionally, morel conidia formed conidial anastomosis tubes. Conidia (mitospores) likely not only function as spermatia, but also as reproductive propagules in Morchella. Further research is imperative to elucidate the relationship between the conidia and chlamydospores, and their unique function in the morel life cycle.  相似文献   

9.
Asexual spores (conidia) are the infectious propagules of many pathogenic fungi, and the capacity to sense the host environment and trigger conidial germination is a key pathogenicity determinant. Germination of conidia requires the de novo establishment of a polarised growth axis and consequent germ tube extension. The molecular mechanisms that control polarisation during germination are poorly understood. In the dimorphic human pathogenic fungus Penicillium marneffei, conidia germinate to produce one of two cell types that have very different fates in response to an environmental cue. At 25 degrees C, conidia germinate to produce the saprophytic cell type, septate, multinucleate hyphae that have the capacity to undergo asexual development. At 37 degrees C, conidia germinate to produce the pathogenic cell type, arthroconidiating hyphae that liberate uninucleate yeast cells. This study shows that the p21-activated kinase pakA is an essential component of the polarity establishment machinery during conidial germination and polarised growth of yeast cells at 37 degrees C but is not required for germination or polarised growth at 25 degrees C. Analysis shows that the heterotrimeric G protein alpha subunit GasC and the CDC42 orthologue CflA lie upstream of PakA for germination at both temperatures, while the Ras orthologue RasA only functions at 25 degrees C. These findings suggest that although some proteins that regulate the establishment of polarised growth in budding yeast are conserved in filamentous fungi, the circuitry and downstream effectors are differentially regulated to give rise to distinct cell types.  相似文献   

10.
The relationship between conidial enzymes of Penicillium expansum and spore germination was examined. The activities of xylanase and pectinase, but not of cellulase and amylase, were detected in the conidia. The levels of xylanase and pectinase were greatly enhanced by xylan and pectin as respective carbon sources in the basal medium. No conidia germinated in the basal medium without a carbon source. The type of carbon source and the enzyme levels of the conidia did not affect the rate of germination. However, a relationship was found between the enzyme levels and the elongation of the germ tubes.  相似文献   

11.
The ultrastructure of Penicillium urticae mycelium was compared at various stages of submerged growth to examine changes associated with the onset of antibiotic biosynthesis. Penicillium urticae was shown to be a normal eukaryotic, septate, filamentous fungus with a variety of subcellular components. Younger mycelia possessed a denser cytoplasm which gave way to a more granular and vacuolated cytoplasm as the organism made the transition into antibiotic biosynthesis. An increase in the thickness, and perhaps the structural complexity, of the cell wall also occurred over the transition. There was evidence of a glycocalyx surrounding the hyphae. Discrete granules, termed peripheral particles, appeared and increased in number over the transition. Their biochemical content and possible involvement in patulin production was tested by examining P. urticae after growth in media of different composition, and by examining the ultrastructure of a patulin minus mutant, P3. The significance of these observations in relation to patulin production is discussed.  相似文献   

12.
Conidiogenesis and secondary metabolism in Penicillium urticae.   总被引:8,自引:2,他引:8       下载免费PDF全文
Submerged cultures of Penicillium urticae (NRRL 2159A) produced the antibiotics patulin and griseofulvin when grown in a glucose-nitrate medium. A high concentration of calcium (i.e., 68 mM) inhibited the production of both antibiotics while stimulating conidiogenesis. Conidial mutants that were defective in an early stage of conidiogenesis produced markedly less patulin, even under growth conditions that favored secondary metabolism. A mutant which lacked the ability to produce the patulin pathway metabolites m-cresol, toluquinol, m-hydroxybenzyl-alcohol, m-hydroxybenzaldehyde, gentisaldehyde, gentisyl alcohol, gentisic acid and patulin, as well as the pathway enzyme m-hydroxybenzyl-alcohol dehydrogenase, still produced yields of conidia that were equivalent to or greater than those of the parent strain. Other mutants which were blocked at later steps of the patulin pathway also produced conidia. These results indicate that patulin and the other related secondary metabolites noted above are not a prerequisite to conidiogenesis in P. urticae. Environmental and developmental factors such as calcium levels and conidiogenesis do, however, indirectly affect the production of patulin pathway metabolites.  相似文献   

13.
14.
AIMS: Conidial germination of Penicillium chrysogenum was carried out under operating conditions compatible with a pastries manufacturing process. METHODS AND RESULTS: A range, limited by two experimental values, was defined for each environmental factor tested: temperature (15 or 25 degrees C), water activity (0.75 or 0.85) and pH (3.5 or 5.5). A closed device was made, which maintained an equilibrium between water activity of the culture medium and atmospheric relative humidity during 25 days, to follow spore germination. The combined effects of temperature, water activity and pH on spore germination were studied by applying factorial design methodology. CONCLUSIONS: Higher rates of spore germination were associated with a high level of water activity. The incubation temperature also had a positive effect. A significant positive interaction between water activity and temperature was observed. Under these specific experimental conditions, pH did not have a significant effect on conidial germination. SIGNIFICANCE AND IMPACT OF THE STUDY: A model describing the behaviour of fungal conidia is proposed.  相似文献   

15.
16.
Summary Submerged culture experiments were conducted to determine the optimal nitrogen source for rapidly producing conidia of the bioherbicide,Colletotrichum truncatum. Germination ofC. truncatum conidial inocula in submerged culture occurred most rapidly (>95% in 6 h) in media provided with a complete complement of amino acids. When (NH4)2SO4, urea, or individual amino acids were provided as the sole nitrogen source, conidial germination was less than 20% after 6 h incubation. Conidia production was delayed inC. truncatum cultures grown in media with urea or individual amino acids as nitrogen sources compared to cultures supplied with Casamino acids or complete synthetic amino acid nitrogen sources. The use of methionine, lysine, tryptophan, isoleucine, leucine or cysteine as a sole nitrogen source severely inhibitedC. truncatum conidia production. Media with synthetic amino acid mixtures less these inhibitory amino acids produced significantly higher conidia yields compared to media with amino acid mixtures containing these amino acids. When various amounts of each individual inhibitory amino acid were added to media which contained amino acid mixtures, cysteine and methionine were shown to be most effective in reducing conidiation. An optimal nitrogen source forC. truncatum conidiation in submerged culture should contain a complete mixture of amino acids with low levels of cysteine, methionine, leucine, isoleucine, lysine and tryptophan for rapid conidiation and optimal conidia yield.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

17.
J Sekiguchi  G M Gaucher 《Biochemistry》1978,17(9):1785-1791
A patulin negative mutant (J1) of Penicillium urticae (NRRL 2159A) was found to accumulate large quantities (greater than 128 mg/L culture) of a reactive, photosensitive compound, which was isolated and identified as (-)-phyllostine (5,6-epoxygentisylquinone). This epoxyquinone possessed an antibiotic activity against Bacillus subtilis which was approximately 80% of that exhibited by patulin. In separate in vivo feeding experiments, [2-14C]acetate and [G-3H]gentisaldehyde were readily incorporated into phyllostine by mutant J1 and [14C]phyllostine was incorporated into patulin by the parent strain (NRRL 2159A). When fed to a washed-cell suspension of a second patulin negative mutant (J2) which produced gentisaldehyde but not phyllostine, unlabeled phyllostine was efficiently converted to patulin in yields of 33, 56, and 92% after 30 min, 1 and 5 h, respectively. The role of phyllostine as an intermediate of a new post-gentisaldehyde portion of the patulin biosynthetic pathway is discussed.  相似文献   

18.
A temperature-sensitive mutant of Neurospora crassa, with reduced levels of protein synthesis at 37°C, was used to identify some essential events in conidial germination. Conidia of mutant strain psi-1 were incubated for 2 hr at 37°C and then shifted to 20°C. Germination was inhibited at 37°C, but commenced after 1.5 hr at 20°C. Increases in aspartate transcarbamylase activity, cell wall synthesis, and nuclear number preceded germination. However, increases in glutamate dehydrogenase activity, amino acid uptake, and DNA synthesis were inhibited prior to germination. Although all of these events were correlated with germination in control cultures of the mutant at 20°C and of its parent strain at 20 and 37°C, some events were apparently not essential for germination. The requirement for aspartate transcarbamylase activity was demonstrated independently by the failure of strain pyr-3d (lacking the activity) to germinate in the absence of uridine. The dispensability of glutamate dehydrogenase activity and DNA synthesis for the germination of some conidia was verified by the germination of strain am-1 (lacking glutamate dehydrogenase activity) in the absence of glutamate and by the germination of the parent strain in the presence of hydroxyurea (an inhibitor of DNA synthesis). These findings identify some landmarks in germination which may be useful in further studies of the regulation of a developmental program. They also provide preliminary evidence that the resting conidia may contain nuclei arrested at different stages of their division cycle.  相似文献   

19.
The levels of the endogenous amino acid pools in conidia, germinating conidia, and mycelia of wild-type Neurospora crassa were measured. Three different chromatographic procedures employing the amino acid analyzer were used to identify and quantitatively measure 28 different ninhydrin-positive compounds. All of the common amino acids were detected in conidial extracts except proline, methionine, and cystine. The levels of these three amino acid pools were also very low in mycelia. During the first hour of germination in minimal medium, the levels of most of the free amino acid pools decreased. The pool of glutamic acid, the predominant free amino acid in conidia, decreased 70% during the first hour. Very little glutamic acid or any other amino acid was excreted into the medium. During the first 20 min of germination, the decrease in the glutamic acid pool was nearly equivalent to the increase in the aspartic acid pool. The aspartic acid and lambda-aminobutyric acid pools were the only amino acid pools that increased to maximum levels within the first 20 min of germination and then decreased. It is proposed that an important metabolic event that occurs during the early stages of conidial germination is the production of reduced pyridine nucleotides. The degradation of the large glutamic acid pool existing in the conidia (2.5% of the conidial dry weight) could produce these reduced coenzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号