首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P4 ATPases are integral transmembrane proteins implicated in phospholipid translocation from the exoplasmic to the cytosolic leaflet of biological membranes. Our present knowledge on the cellular physiology of P4 ATPases is mostly derived from studies in the yeast Saccharomyces cerevisiae, where P4 ATPases play a pivotal role in the biogenesis of intracellular transport vesicles, polarized protein transport and protein maturation. In contrast, the physiological and cellular functions of mammalian P4 ATPases are largely unexplored. P4 ATPases act in concert with members of the CDC50 protein family, which are putative β-subunits for P4 ATPases. This review highlights the current status of a slowly emerging research field and emphasizes the contribution of P4 ATPases to the vesicle-generating machinery.  相似文献   

2.
Proton pumping ATPases are found in all groups of present day organisms. The F-ATPases of eubacteria, mitochondria and chloroplasts also function as ATP synthases, i.e., they catalyze the final step that transforms the energy available from reduction/oxidation reactions (e.g., in photosynthesis) into ATP, the usual energy currency of modern cells. The primary structure of these ATPases/ATP synthases was found to be much more conserved between different groups of bacteria than other parts of the photosynthetic machinery, e.g., reaction center proteins and redox carrier complexes.These F-ATPases and the vacuolar type ATPase, which is found on many of the endomembranes of eukaryotic cells, were shown to be homologous to each other; i.e., these two groups of ATPases evolved from the same enzyme present in the common ancestor. (The term eubacteria is used here to denote the phylogenetic group containing all bacteria except the archaebacteria.) Sequences obtained for the plasmamembrane ATPase of various archaebacteria revealed that this ATPase is much more similar to the eukaryotic than to the eubacterial counterpart. The eukaryotic cell of higher organisms evolved from a symbiosis between eubacteria (that evolved into mitochondria and chloroplasts) and a host organism. Using the vacuolar type ATPase as a molecular marker for the cytoplasmic component of the eukaryotic cell reveals that this host organism was a close relative of the archaebacteria.A unique feature of the evolution of the ATPases is the presence of a non-catalytic subunit that is paralogous to the catalytic subunit, i.e., the two types of subunits evolved from a common ancestral gene. Since the gene duplication that gave rise to these two types of subunits had already occurred in the last common ancestor of all living organisms, this non-catalytic subunit can be used to root the tree of life by means of an outgroup; that is, the location of the last common ancestor of the major domains of living organisms (archaebacteria, eubacteria and eukaryotes) can be located in the tree of life without assuming constant or equal rates of change in the different branches.A correlation between structure and function of ATPases has been established for present day organisms. Implications resulting from this correlation for biochemical pathways, especially photosynthesis, that were operative in the last common ancestor and preceding life forms are discussed.  相似文献   

3.
Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu+ (Km ∼1 or 0.5 μm, respectively) and similar affinity to Ag+ (Km ∼2.5 μm). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu+ transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.  相似文献   

4.
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P4-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P4-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P4-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

5.
P4 ATPases (type 4 P-type ATPases) are multispan transmembrane proteins that have been implicated in phospholipid translocation from the exoplasmic to the cytoplasmic leaflet of biological membranes. Studies in Saccharomyces cerevisiae have indicated that P4 ATPases are important in vesicle biogenesis and are required for vesicular trafficking along several intracellular vesicular transport routes. Although little is known about mammalian P4 ATPases, some members of this subfamily appear to be associated with human disease or mouse pathophysiology. ATP8B1, a phosphatidylserine translocase, is the most extensively studied mammalian P4 ATPase. This protein is important for maintaining the detergent resistant properties of the apical membrane of the hepatocyte. Mutations in ATP8B1 give rise to severe liver disease. Furthermore, a role for Atp8b3 in mouse sperm cell capacitation has been suggested, whereas deficiency of Atp10a and Atp10d leads to insulin resistance and obesity in mice. Here we review the present status on the pathophysiological consequences of P4 ATPase deficiency.  相似文献   

6.
Peptide presentation by bacteriophage P4   总被引:1,自引:0,他引:1  
Abstract: This article focuses on bacteriophage P4 as a potential peptide display phage by exploring the possibility of using the P4 capsid decoration component, Psu, as a peptide carrier protein. Psu is non-essential for P4 growth but it enhances the stability of the P4 capsid by binding to its exterior. We have constructed a unique Sac I cloning site in the beginning of the psu gene. This site changes the third amino acid of Psu from Ser to Leu. This substitution does not destroy the binding of Psu to the P4 capsid. A synthetic oligonucleotide encoding a 10-amino acid peptide whose sequence is part of the human p62c-myc protein, has been inserted into the Sac I site. The Psuc-myc shows full capsid binding activity and reacts with monoclonal antibodies directed against the c-myc peptide. These results pave the way for the further development of a peptide display system based on bacteriophage p4.  相似文献   

7.
8.
The phospholipid composition of adult human lens membranes differs dramatically from that of any other mammalian membrane. Due to minimal cell turnover, cells in the nucleus of the human lens may be considered as the longest lived cells in our body. This work reassesses previous assignments of phospholipid 31P NMR resonances in adult human lenses. The new assignments are based not only on chemical shifts but also on temperature coefficients. By addition of known phospholipids and examination by matrix-assisted laser desorption/ionization mass spectrometry, several misassigned resonances have been corrected. The revised composition reveals the possible presence of ceramide-1-phosphate and dihydroceramide-1-phosphate. Among glycerophospholipids, the most abundant one does not correspond to phosphatidylglycerol but may be due to the lysoform of alkyl-acyl analogs of phosphatidylethanolamine. Besides sphingophospholipids, adult human lens membranes contain significant amounts of ether (1-O-alkyl) glycerophospholipids and their corresponding lysoforms.  相似文献   

9.
Cellular membranes display a diversity of functions that are conferred by the unique composition and organization of their proteins and lipids. One important aspect of lipid organization is the asymmetric distribution of phospholipids (PLs) across the plasma membrane. The unequal distribution of key PLs between the cytofacial and exofacial leaflets of the bilayer creates physical surface tension that can be used to bend the membrane; and like Ca2+, a chemical gradient that can be used to transduce biochemical signals. PL flippases in the type IV P-type ATPase (P4-ATPase) family are the principle transporters used to set and repair this PL gradient and the asymmetric organization of these membranes are encoded by the substrate specificity of these enzymes. Thus, understanding the mechanisms of P4-ATPase substrate specificity will help reveal their role in membrane organization and cell biology. Further, decoding the structural determinants of substrate specificity provides investigators the opportunity to mutationally tune this specificity to explore the role of particular PL substrates in P4-ATPase cellular functions. This work reviews the role of P4-ATPases in membrane biology, presents our current understanding of P4-ATPase substrate specificity, and discusses how these fundamental aspects of P4-ATPase enzymology may be used to enhance our knowledge of cellular membrane biology.  相似文献   

10.
V-type ATPases are multi-protein complexes, which acidify cellular compartments in eukaryotes. They pump protons against an ion gradient, driven by a mechano-chemical framework that exploits ATP hydrolysis as an energy source. This process drives the rotation of the so-called c-ring, a membrane embedded complex in the Vo-domain of the V-type ATPase, resulting in translocation of protons across the membrane. One way in which the enzyme is regulated is by disassembly and reassembly of the V1-domain with the Vo-domain, which inactivates and reactivates the enzyme, respectively. Recently, structural data for the isolated Vo-domain from S. cerevisiae in an inactivated state were reported, suggesting the location of previously unobserved proton access pathways within the cytoplasmic and luminal compartments of the stator subunit a in Vo. However, the structural rationale for this inactivation remained unclear. In this study, the water accessibility pathway at the cytoplasmic side is confirmed, and novel insights into the role of the luminal channel with respect to the inactivation mechanism are obtained, using atomic-resolution molecular dynamics simulations. The results show that protonation of the key-glutamate, located in the c-ring of the Vo-domain, and facing the luminal compartment is preserved, when residing in the V1-depleted state. Maintaining the protonation of this essential glutamate is necessary to lock the luminal channel in the inactive, solvent-free state. Based on these theoretical observations and previous experimental results, a model of the proton translocation mechanism in the Vo-domain from V-type ATPases is proposed.  相似文献   

11.
In mammals, the most poorly understood P-type ATPases are those of the P(5) subfamily. To begin characterization of the mammalian P(5)-ATPases, BLAST searches of DNA sequence databases were performed. Five genes were identified in the mouse, human, dog, and rat genomes, and the coding sequences of the mouse genes, termed Atp13a1-Atp13a5, were determined. The intron/exon organization of Atp13a1 differs entirely from those of Atp13a2-5, which are closely related. Amino acid sequence comparisons between the five mouse and two yeast P(5)-ATPases suggest that Atp13a1 is orthologous to the yeast Cod1 gene and that Atp13a2-5 are orthologous to yeast Yor291w. Northern blot analysis showed that Atp13a1, Atp13a2, and Atp13a3 mRNAs were expressed in all mouse tissues, whereas Atp13a4 and Atp13a5 mRNAs were restricted to brain and stomach. While the substrate specificity of these transporters is unknown, their importance is underscored by the presence of homologs in fish, insects, worms, and other eukaryotes.  相似文献   

12.
13.
Peganum harmala Linn, commonly known as 'harmal' belonging to the family Zygophyllaceae, is one of the most important medicinal plants of India. In continuation of our drug development program on Indian medicinal plants we discovered antihyperglycemic activity in 4-hydroxypipecolic acid (4-HPA), isolated from the seed of P. harmala. Effect of 4-HPA on glucose uptake and glucose transporter-4 (GLUT-4) translocation was investigated in L6 skeletal muscle cell lines. Treatment with 4-HPA stimulated both glucose uptake and GLUT4 translocation from intracellular to cell surface in skeletal muscle cells in a concentration-dependent manner, which might be leading to antihyperglycemic effect.  相似文献   

14.
Isoproterenol is a beta adrenergic agonist whose effects have been attributed to the generation of cAMP. Previous studies have shown that it inhibits glucose transport in adipocytes without changing the number of insulin-responsive glucose transporters (GLUT4) on the cell surface. However, we have shown previously that cAMP stimulates translocation of GLUT4 to the cell surface in adipocytes (Keladaet al. J Biol Chem 267, 7021–7025, 1992). We therefore further investigated the mechanisms involved in isoproterenol regulation of glucose transport. Consistent with the effects of dibutyryl cAMP, we found that a low concentration of isoproterenol (10 nM) stimulated glucose transport and the translocation of GLUT4 from the low density microsomal fraction to the plasma membrane. By contrast, a higher concentration of isoproterenol (1 M) did not stimulate transport or GLUT4 translocation and furthermore inhibited dibutyryl cAMP-stimulated GLUT4 translocation. This inhibitory effect was specific for cAMP since isoproterenol had no effect on insulin-stimulated GLUT4 translocation. We conclude that isoproterenol has a biphasic effect on glucose transport, mediated by acute translocation of GLUT4 at low concentrations and by inhibition of intrinsic activity at high concentration, both of which may be explained by effects of cAMP. It has a further cAMP-independent effect at high concentration to inhibit cAMP-mediated translocation of GLUT4.This work forms portions of the PhD thesis requirements.  相似文献   

15.
To screen genes involved in P15(INK4b) regulation during cell cycle, differential display method was applied to compare mRNAs from G(1) synchronized cells of MLIK6, which overexpressed P15(INK4b) gene, and its control MLC2. By using this approach, 15 cDNA fragments that were preferentially expressed in MLIK6 cells, but not in MLC2 cells, were screened out. A novel gene named P15RS was identified with further analysis. Combining the sequence from DD-PCR, homology analysis against EST database and RACE, a 4,404 bp complete cDNA sequence of P15RS was generated. Sequence analysis revealed that P15RS cDNA encoded a 312-amino-acid peptide containing a RAR domain that is involved in regulation of nuclear pre-mRNA, which suggests that P15RS may be a nuclear regulation protein. Genomic sequence analysis demonstrated that human P15RS gene was localized on chromosome 18q12 with seven exons and six introns. Expressing antisense P15RS in MLIK6 cells can up-regulate the expression of cyclinD1 and cyclinE. These data indicate that P15RS may act as a negative regulator in G(1) phase.  相似文献   

16.
Cytochrome P450s of the 4A Subfamily in the Brain   总被引:2,自引:0,他引:2  
Abstract: Members of the P450 4A subfamily are key enzymes in the synthesis and degradation of metabolites of arachidonic acid, which are of physiological importance in the brain. In the rat, four members of this subfamily, 4A1, 4A2, 4A3, and 4A8, have been described. In this study, the expression of members of the 4A subfamily in the rat brain has been examined by PCR amplification, by western and northern blotting, and by protein N-terminal sequencing. With PCR all four members of the subfamily were detectable in the liver and kidney. P450 4A1 was found exclusively in the liver and kidney, whereas P450 4A2 was detectable in all the tissues tested, including the lung, seminal vesicles, prostate, cerebral cortex, hypothalamic preoptic area, cerebellum, and brainstem. The tissue distribution of P450 4A3 was similar to that of 4A2 except that it was not detectable in seminal vesicles. A P450 4A8-specific fragment was amplified from the kidney, liver, and prostate and weakly from the cerebral cortex but not from other brain regions. Despite the evidence of their presence by PCR, no members of the 4A family were detectable on northern blots with mRNA from the brain. On western blots a P450 4A-specific antiserum recognized a band in P450 fractions prepared from the brain. The intensity of the signal with 30 pmol of P450 from the brain was similar to that with 10 pmol of liver microsomal P450. The brain P450 was extracted from 1 g of brain, whereas the 10 pmol of liver P450 is the equivalent of 1 mg of liver. This suggests a brain content of 4A P450 that is 0.1% of that in the liver. N-terminal sequencing of the protein bands in the brain P450 fraction revealed the presence of both P450 4A8 and 4A3. These data show the presence in the brain of forms of P450 whose level of mRNA is too low to be detected on northern blots. The specificity of tissue distribution shows that this is not just a nonspecific background level of expression and suggests a role of brain P450 in the synthesis and degradation of arachidonic acid metabolites.  相似文献   

17.
Summary After infection of sensitive cells in the absence of a helper phage, the satellite bacteriophage P4 enters a temporary phase of uncommitted replication followed by commitment to either the repressed-integrated condition or the derepressed-high copy number mode of replication. The transient phase and the stable plasmid condition differ from each other in the pattern of protein synthesis, in the rate of P4 DNA replication and in the expression of some gene functions. The regulatory condition characteristic of the P4 plasmid state affects a superinfecting genome, preventing the establishment of the P4 immune condition.  相似文献   

18.
The transfer of phospholipid molecules between biological and synthetic membranes is facilitated by the presence of soluble catalytic proteins, such as those isolated from bovine brain which interacts with phosphatidylinositol and phosphatidylcholine and from bovine liver which is specific for phosphatidylcholine. A series of tertiary amine local anesthetics decreases the rates of protein-catalyzed phospholipid transfer. The potency of inhibition is dibucaine>tetracaine>lidocaine>procaine, an order which is compared with and identical to those for a wide variety of anesthetic-dependent membrane phenomena. Half-maximal inhibition of phosphatidylinositol transfer by dibucaine occurs at a concentration of 0.18 mM, significantly lower than the concentration of 1.9 mM required for half-maximal inhibition of phosphatidylcholine transfer activity of the brain protein. Comparable inhibition of liver protein phosphatidylcholine transfer activity is observed at 1.6 mM dibucaine. For activity measurements performed at different pH, dibucaine is more potent at the lower pH values which favor the equilibrium toward the charged molecular species. With membranes containing increasing molar proportions of phosphatidate, dibucaine is increasingly more potent. No effect of Ca2+ on the control transfer activity or the inhibitory action of dibucaine is noted. These results are discussed in terms of the formation of specific phosphatidylinositol or phosphatidylcholine complexes with the amphiphilic anesthetics in the membrane bilayer.  相似文献   

19.
The P2X4 receptor is an ATP-gated ion channel expressed in neurons, endothelia and immune cells. Plasma membrane expression of P2X4 is regulated by dynamin-dependent endocytosis, and this study identifies a Rab5-dependent pathway of receptor internalisation. Expression of Rab5 constructs altered the distribution of P2X4 in HEK-293 cells, and both constitutive internalisation and agonist-induced desensitisation of P2X4 were increased by co-expression of wild-type Rab5 or constitutively active Rab5 (Q79L). Expression of inactive dynamin K44A and Rab5 S34N constructs abolished agonist-induced desensitisation, suggesting internalisation as the underlying mechanism. Blocking P2X4 internalisation in this way also abolished potentiation of ATP-induced currents by the allosteric modulator ivermectin. This suggests that the dynamin-Rab5 internalisation pathway is essential for the ivermectin potentiation effect. In agreement with this hypothesis, the co-expression of wild-type dynamin, wild-type Rab5 or active Rab5 (Q79L) could increase the potentiation of the ATP-induced P2X4 response by ivermectin. These findings highlight Rab5 GTPase as a key regulator of P2X4 receptor cell surface expression and internalisation.  相似文献   

20.
Importin α1 can bind classical nuclear localization signals (NLSs) in two NLS-binding sites, known as "major" and "minor." The major site is located between ARM repeats 2-4, whereas the minor site spans ARM 7-8. In this study, we have characterized the cellular localization of human phospholipid scramblase 4 (hPLSCR4), a member of the phospholipid scramblase protein family. We identified a minimal NLS in hPLSCR4 ((273)GSIIRKWN(280)) that contains only two basic amino acids. This NLS is both necessary for nuclear localization of hPLSCR4 in transfected HeLa cells and sufficient for nuclear import of a non-diffusible cargo in permeabilized cells. Mutation of only one of the two basic residues, Arg(277), correlates with loss of nuclear localization, suggesting this amino acid plays a key role in nuclear transport. Crystallographic analysis of mammalian importin α1 in complex with the hPLSCR4-NLS reveals this minimal NLS binds specifically and exclusively to the minor binding site of importin α. These data provide the first structural and functional evidence of a novel NLS-binding mode in importin α1 that uses only the minor groove as the exclusive site for nuclear import of nonclassical cargos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号