首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of 2-nitro-5-[(hexanoyl)-amino]-benzoic acid and 2-nitro-5-[(octanoyl)-amino]-benzoic acid as chromogenic substrates for the determination of aliphatic penicillin acylase activity is described. During enzymatic hydrolysis, the released chromophore, 2-nitro-5-amino-benzoic acid, was detected at 405 nm. Penicillin acylase from Streptomyces lavendulae had an appreciable activity towards these substrates, which can then be used to detect penicillin acylases able to cleave hexanoyl and octanoyl residues off synthetic amides as well as penicillin dihydroF and penicillin K, their natural analogues.  相似文献   

2.
Penicillin G acylase (PGA) is used for the commercial production of semi-synthetic penicillins. It hydrolyses the amide bond in penicillin producing 6-aminopenicillanic acid and phenylacetate. 6-Aminopenicillanic acid, having the beta-lactam nucleus, is the parent compound for all semi-synthetic penicillins. Penicillin G acylase from Kluyvera citrophila was purified and chemically modified to identify the role of arginine in catalysis. Modification with 20 mM phenylglyoxal and 50 mM 2,3-butanedione resulted in 82% and 78% inactivation, respectively. Inactivation was prevented by protection with benzylpenicillin or phenylacetate at 50 mM. The reaction followed psuedo-first order kinetics and the inactivation kinetics (V(max), K(m), and k(cat)) of native and modified enzyme indicates the essentiality of arginyl residue in catalysis.  相似文献   

3.
We report on the molecular cloning and characterization of penicillin V acylase (PVA) from an actinomycete, Streptomyces mobaraensis (Sm-PVA), which was originally isolated as an acylase that efficiently hydrolyzes the amide bond of various N-fatty-acyl-l-amino acids and N-fatty-acyl-peptides as well as capsaicin (8-methyl-N-vanillyl-6-nonenamide). In addition, the purified Sm-PVA hydrolyzed penicillin V with the highest activity (k(cat)) among the PVAs so far reported, penicillin G, and 2-nitro-5-phenoxyacetamide benzoic acid. The BLAST search revealed that the Sm-PVA precursor is composed of a polypeptide that is characteristic of enzymes belonging to the beta-lactam acylase family with four distinct segments; a signal sequence (43 amino acids), an alpha subunit (173 amino acids), a linker peptide (28 amino acids), and a beta subunit (570 amino acids). The mature, active Sm-PVA is a heterodimeric protein with alpha and beta subunits, in contrast to PVAs isolated from Bacillus sphaericus and B. subtilis, which have a homotetrameric structure. The amino acid sequence of Sm-PVA showed identities to PVA from S. lavendulae, N-acylhomoserine lactone-degrading acylase from Streptomyces sp., cyclic lipopeptide acylase from Streptomyces sp., and aculeacin A acylase from Actinoplanes utahensis with 68, 67, 67, and 41% identities, respectively.  相似文献   

4.
Summary The synthetic substrate 6-nitro-3-(phenylacetamido) benzoic acid (NIPAB) is an appropriate substrate for assaying penicillin acylase activity in reversed micellar systems of Aerosol - OT in isooctane. Accumulation of 6-nitro-3-aminobenzoic acid (NABA) produced by the enzymatic hydrolysis of NIPAB, followed by the increase in absorbance at 405 nm, was linear at 4 to 20 mM for up to 30 minutes and 15 °C to 40 °C.Abbreviations PA penicillin acylase (penicillin amidohydrolase EC 3.5.1.11) - AOT Aerosol OT (sodium bis- (2-ethylhexyl) sulfosuccinate) - NIPAB 6-nitro-3-(phenylacetamido)-benzoic acid - NABA 6-nitro-3-aminobenzoic acid - BSA bovine serum albumin  相似文献   

5.
Aculeacin A acylase from Actinoplanes utahensis produced by Streptomyces lividans revealed acylase activities that are able to hydrolyze penicillin V and several natural aliphatic penicillins. Penicillin K was the best substrate, showing a catalytic efficiency of 34.79 mM(-1) s(-1). Furthermore, aculeacin A acylase was highly thermostable, with a midpoint transition temperature of 81.5 degrees C.  相似文献   

6.
A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the Km for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site.  相似文献   

7.
Aeromonas sp. ACY 95 produces constitutively and intracellularly a penicillin V acylase at an early stage of fermentation (12 h) and a cephalosporin C acylase at a later stage (36 h). Some penicillins, cephalosporin C and their side chain moieties/analogues, phenoxyacetic acid, penicillin V and penicillin G, enhanced penicillin V acylase production while none of the test compounds affected cephalosporin C acylase production. Supplementation of the medium with some sugars and sugar derivatives repressed enzyme production to varying degrees. The studies on enzyme formation, induction and repression, and substrate profile suggest that the cephalosporin C acylase and penicillin V acylase are two distinct enzymes. Substrate specificity studies indicate that the Aeromonas sp. ACY 95 produces a true cephalosporin C acylase which unlike the enzymes reported hitherto hydrolyses cephalosporin C specifically.The authors are with Research and Development, Hindustan Antibiotics Limited, Pimpri. Pune 411 018, India  相似文献   

8.
The paper reports the purification and characterization of the first penicillin acylase from Bacillus subtilis. YxeI, the protein annotated as hypothetical, coded by the gene yxeI in the open reading frame between iol and hut operons in B. subtilis was cloned and expressed in Eshcherichia coli, purified and characterized. The purified protein showed measurable penicillin acylase activity with penicillin V. The enzyme was a homotetramer of 148 kDa. The apparent Km of the enzyme for penicillin V and the synthetic substrate 2-nitro-5-(phenoxyacetamido)-benzoic acid was 40 mM and 0.63 mM, respectively, and the association constants were 8.93 × 102 M−1 and 2.51 × 105 M−1, respectively. It was inhibited by cephalosporins and conjugated bile salts, substrates of the closely related bile acid hydrolases. It had good sequence homology with other penicillin V acylases and conjugated bile acid hydrolases, members of the Ntn hydrolase family. The N-terminal nucleophile was a cysteine which is revealed by a simple removal of N-formyl-methionine. The activity of the protein was affected by high temperature, acidic pH and the presence of the denaturant guanidine hydrochloride.  相似文献   

9.
1. The penicillin acylase of Eschericha coli N.C.I.B. 8743 is a reversible enzyme. Reaction rates for the two directions have been determined. 2. Measurements of the rates of enzymic synthesis of penicillins from 6-aminopenicillanic acid and various carboxylic acids revealed that p-hydroxyphenylacetic acid was the best substrate, followed by phenylacetic, 2-thienylacetic, substituted phenylacetic, 3-hexenoic and n-hexanoic acids. 3. The rate of synthesis of penicillin improved when amides or N-acylglycines were used; alpha-aminobenzylpenicillin and phenoxymethylpenicillin were only synthesized when using these more energy-rich compounds. 4. Phenyl-acetylglycine was the best substrate for the synthesis of benzylpenicillin compared with other derivatives of phenylacetic acid. 5. The enzyme was specific for acyl-l-amino acids, benzylpenicillin being synthesized from phenylacetyl-l-alpha-aminophenylacetic acid but not from phenylacetyl-d-alpha-aminophenylacetic acid. 6. alpha-Phenoxyethylpenicillin was synthesized from 6-aminopenicillanic acid and alpha-phenoxypropionylthioglycollic acid non-enzymically, but the rate was faster in the presence of the enzyme. 7. The E. coli acylase catalysed the acylation of hydroxylamine by acids or amides to give hydroxamic acids, the phenylacetyl group being the most suitable acyl group. The enzyme also catalysed other acyl-group transfers.  相似文献   

10.
At 28 °C, Streptomyces lavendulae produced high levels of penicillin V acylase (178 IU/l of culture) when grown on skim milk as the sole nutrient source for 275 h. The enzyme showed catabolite repression by glucose and was produced in the stationary phase of growth. Penicillin V was a good inducer of penicillin V acylase formation, while phenoxyacetic acid, the side-chain moiety of penicillin V, did not alter enzyme production significantly. The enzyme was stable between pH 6 and 11 and at temperatures from 20 °C to 55 °C. This extracellular enzyme was able to hydrolyse natural penicillins and unable to hydrolyse penicillin G. Received: 22 March 1999 / Received revision: 16 June 1999 / Accepted: 20 June 1999  相似文献   

11.
Penicillin acylase formation by the hybrid strain Escherichia coli 5K(pHM12) was studied under different culture conditions and reached 200 to 250 mumol of 6-aminopenicillanic acid per min per g of bacteria (wet weight) for penicillin G. The Km of whole-cell acylase was determined with 9 to 11 mM for penicillin G at a pH optimum of 7.8 at 45 degrees C. A competitive product inhibition for phenylacetic acid of Ki = 130 mM was found. 6-Aminopenicillanic acid acts as a noncompetitive inhibitor, with a Ki of 131. The temperature optimum of the reaction lies at 54 degrees C. Penicillin G inhibits the reaction at Ki(S) = 1,565 to 1,570 mM. Whole-cell acylase reacts on a wide spectrum of penicillins and cephalosporins, but those substrates with a delta-aminoadipyl rest are not hydrolized. beta-Lactamase activity of less than 1% relative to the acylase activity was found at reaction temperatures between 28 and 45 degrees C. After a comparison of different methods for the estimation of beta-lactamase activity, we found that high-pressure liquid chromatography is to be preferred. During batch fermentation of E. coli 5K(pHM12), problems of plasmid stability in the host strain arose which were overcome by the addition of 4 mg of tetracycline per liter to the medium as a selective marker.  相似文献   

12.
Penicillin acylase formation by the hybrid strain Escherichia coli 5K(pHM12) was studied under different culture conditions and reached 200 to 250 mumol of 6-aminopenicillanic acid per min per g of bacteria (wet weight) for penicillin G. The Km of whole-cell acylase was determined with 9 to 11 mM for penicillin G at a pH optimum of 7.8 at 45 degrees C. A competitive product inhibition for phenylacetic acid of Ki = 130 mM was found. 6-Aminopenicillanic acid acts as a noncompetitive inhibitor, with a Ki of 131. The temperature optimum of the reaction lies at 54 degrees C. Penicillin G inhibits the reaction at Ki(S) = 1,565 to 1,570 mM. Whole-cell acylase reacts on a wide spectrum of penicillins and cephalosporins, but those substrates with a delta-aminoadipyl rest are not hydrolized. beta-Lactamase activity of less than 1% relative to the acylase activity was found at reaction temperatures between 28 and 45 degrees C. After a comparison of different methods for the estimation of beta-lactamase activity, we found that high-pressure liquid chromatography is to be preferred. During batch fermentation of E. coli 5K(pHM12), problems of plasmid stability in the host strain arose which were overcome by the addition of 4 mg of tetracycline per liter to the medium as a selective marker.  相似文献   

13.
Summary Oligonucleotide-directed mutagenesis has been used to obtain specific changes in the penicillin acylase gene from Kluyvera citrophila. Wild-type and mutant proteins were purified and the kinetic constants for different substrates were determined. Mutations in Met168 highly decreased the specificity constant of the enzyme for penicillin G, penicillin V and phenylacetyl-4-aminobenzoic acid and the catalytic constant k cat for phenylacetyl-4-aminobenzoic acid. Likewise, the phenylmethylsulphonyl-fluoride sensitivity was significantly decreased. It is concluded that the 168 residue is involved in binding by interaction with the acid moiety of the substrate. A putative penicillin-binding domain was located in penicillin acylase by sequence homology with other penicillin-recognizing enzymes. Lys374 and His481, the conserved amino acid residues that are essential for catalysis in these enzymes, can be changed in penicillin acylase with no changes to the k cat and phenylmethylsulphonyl fluoride reactivity, but change the K m.The likelihood of the existence of this proposed penicillin binding site is discussed. The reported results might be used to alter the substrate specificity of penicillin acylase in order to hydrolyse substrates of industrial significance other than penicillins. Offprint requests to: I. Prieto  相似文献   

14.
The penicillin G acylase (PGA) and cephalosporin acylase (CA) families, which are members of the N-terminal (Ntn) hydrolases, are valuable for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. Regardless of the low sequence similarity between PGA and CA, the structural homologies at their active-sites are very high. However, despite this structural conservation, they catalyze very different substrates. PGA reacts with the hydrophobic aromatic side-chain (the phenylacetyl moiety) of penicillin G (PG), whereas CA targets the hydrophilic linear side-chain (the glutaryl moiety) of glutaryl-7-ACA (GL-7-ACA). These different substrate specificities are likely to be due to differences in the side-chains of the active-site residues. In this study, mutagenesis of active-site residues binding the side-chain moiety of PG changed the substrate specificity of PGA to that of CA. This mutant PGA may constitute an alternative source of engineered enzymes for the industrial production of 7-ACA.  相似文献   

15.
Partially purified penicillin acylases (EC 3.5.1.11) were prepared from Pseudomonas melanogenum KY 3987 and Kluyvera citrophila KY 3641 capable of synthesizing d(–)-α-amino-benzylpenicillin (APc) from 6-aminopenicillanic acid (6-APA) and phenylglycine methyl ester. As the cell-free extract of P. melanogenum contained high levels of penicillinase (EC 3.5.2.6), the acylase was separated completely from the penicillinase by use of Sephadex column chromatography or electrofocusing. The most salient property of the P. melanogenum penicillin acylase was its substrate specificity to penicillin substrates: it could form 6-APA only from APc but not from penicillin G, penicillin V and p-aminobenzylpenicillin, whereas the K. citrophila acylase acted on all of these penicillins. The P. melanogenum enzyme is hence considered a novel type of penicillin acylase.  相似文献   

16.
Recombinant penicillin acylase from Streptomyces lavendulae was covalently bound to epoxy-activated Sepabeads EC-EP303®. Optimization of the immobilization process led to a homogeneous distribution of the enzyme on the support surface avoiding the attachment of enzyme aggregates, as shown by confocal electron microscopy. The optimal immobilized biocatalyst had a specific enzymatic activity of 26.2IUgwetcarrier?1 in the hydrolysis of penicillin V at pH 8.0 and 40°C. This biocatalyst showed the highest activity at pH 8.5 and 65°C, 1.5 pH units lower and 5°C higher than its soluble counterpart. Substrate specificity of the derivative also showed its ability to efficiently hydrolyze other natural aliphatic penicillins such as penicillins K, F and dihydroF. The immobilized enzyme was highly stable at 40°C and pH 8.0 (t1/2=625 h vs. t1/2=397 h for the soluble enzyme), and it could be recycled for at least 30 consecutive batch reactions without loss of catalytic activity.  相似文献   

17.
1. A method is given for the preparation of penicillin acylase by using Escherichia coli N.C.I.B. 8743 and a strain selected for higher yield. The enzyme is associated with the bacterial cells and removes the side chains of penicillins to give 6-amino-penicillanic acid and a carboxylic acid. 2. The rates of penicillin deacylation indicated that p-hydroxybenzylpenicillin was the best substrate, followed in diminishing order by benzyl-, dl-alpha-hydroxybenzyl-, 2-furylmethyl-, 2-thienylmethyl-, d-alpha-aminobenzyl-, n-propoxymethyl- and isobutoxymethyl-penicillin. Phenylpenicillin and dl-alpha-carboxybenzylpenicillin were not substrates and phenoxymethyl-penicillin was very poor. 3. Amides and esters of the above penicillins were also substrates for the deacylation reaction, as were cephalosporins with a thienylmethyl side chain. 4. For the deacylation of 2-furylmethylpenicillin at 21 degrees the optimum pH was 8.2. The optimum temperature was 60 degrees at pH7. 5. By using selection A of N.C.I.B. 8743 and determining reaction velocities by assaying yields of 6-amino-penicillanic acid in a 10min. reaction at 50 degrees and pH8.2, the K(m) for benzylpenicillin was found to be about 30mm and the K(m) for 2-furylmethylpenicillin, about 10mm. The V(max.) values were 0.6 and 0.24mumole/min./mg. of bacterial cells respectively.  相似文献   

18.
Summary The extraction of penicillin acylase by reverse micellar solutions of a surfactant was studied. A 50 mM solution of dioctyl sodium sulphosuccinate in isooctane extracted 46% of the enzyme activity in a crude periplasmic extract of induced cells of E. coli ATCC 9637. The increase in the specific activity of the final enzyme preparation, after stripping of the organic phase at pH 7.5, in the presence of 1 M KCl, was 8 - fold.Abbreviations PA penicillin acylase (penicillin amidohydrolase EC 3.5.1.11) - AOT Aerosol OT (dioctyl sodium sulphosuccinate) - NIPAB 6-nitro-3-(phenylacetamido)-benzoic acid - NABA 6-nitro-3-aminobenzoic acid - BSA bovine serum albumin - SDS sodium dodecylsulphate  相似文献   

19.
Abstract

Enzymatic synthesis of penicillin V (penV) by acylation of 6-aminopenicillanic acid (6-APA) was carried out using methyl phenoxyacetate (MPOA) as activated acyl donor and soluble penicillin acylase from Streptomyces lavendulae (SlPVA) as biocatalyst. The effect of different reaction conditions on penV synthesis was investigated, such as enzyme concentration, pH, molar ratio of 6-APA to MPOA, as well as presence of DMSO as water-miscible co-solvent at different concentrations. Time-course profiles of all reactions followed the typical pattern of kinetically controlled synthesis (KCS) of β-lactam antibiotics: penV concentration reached a maximum (highest yield or Ymax) and then decreased gradually. Such maximum was higher at pH 7.0, observing that final penV concentration was abruptly reduced when basic pH values were employed in the reaction. Under the selected conditions (100?mM Tris/HCl buffer pH 7.0, 30?°C, 2.7% (v/v) DMSO, 20?mM MPOA, 0.3 UI/ml of SlPVA), Ymax was enhanced by increasing the substrate molar ratio (6-APA to MPOA) up to 5, reaching a maximum of 94.5% and a S/H value of 16.4 (ratio of synthetic activity to hydrolytic activity). As a consequence, the use of an excess of 6-APA as nucleophile has allowed us to obtain some of the highest Ymax and S/H values among those reported in literature for KCS of β-lactam antibiotics. Although many penicillin G acylases (PGAs) have been described in kinetically controlled acylations, SlPVA should be considered as a different enzyme in the biocatalytic tool-box for novel potential synthetic processes, mainly due to its different substrate specificity compared to PGAs.  相似文献   

20.
A simple, rapid assay for screening penicillin G acylase-producing bacteria is presented. The method is based on the formation of yellow 2-nitro-5-aminobenzoic acid by penicillin G acylase acting on 2-nitro-5-phenylacetaminobenzoic acid (NIPAB). NIPAB test paper is briefly applied to bacterial colonies on the agar surface, which are subsequently scored individually on the paper by color; bright yellow indicates the presence of penicillin G acylase, natural color its absence. The present method is suitable not only for screening penicillin G acylase-production by a variety of bacteria but also for detection from a large number of transformant colonies of clones containing a gene encoding for the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号