首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

2.
Protein kinases play key roles in cellular functions. They are involved in many cellular functions including; signal transduction, cell cycle regulation, cell division, and cell differentiation. Alterations of protein kinase by gene amplification, mutation or viral factors often induce tumor formation and tumor progression toward malignancy. The identification and cloning of kinase genes can provide a better understanding of the mechanisms of tumorigenesis as well as diagnostic tools for tumor staging. In this study, we have used degenerated polymerase-chain-reaction primers according to the consensus catalytic domain motifs to amplify protein kinase genes (protein-tyrosine kinase, PTK, and protein-serine/threonine kinase, PSK) from human stomach cancer cells. Following amplification, the protein kinase molecules expressed in the gastric cancer cells were cloned into plasmid vectors for cloning and sequencing. Sequence analysis of polymerase-chain-reaction products resulted in the identification of 25 protein kinases, including two novel ones. Expression of several relevant PTK/PSK genes in gastric cancer cells and tissues was further substantiated by RT-PCR using gene-specific primers. The identification of protein kinases expressed or activated in the gastric cancer cells provide the framework to understand the oncogenic process of stomach cancer.  相似文献   

3.
4.
Chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca2+ and Ca2+/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca2+-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the β-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by β-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca2+ concentration in target cells, thereby controlling developmental events in the anther. Received: 29 January 1999 / Accepted: 12 February 1999  相似文献   

5.
Unravelling the activation mechanisms of protein kinase B/Akt   总被引:17,自引:0,他引:17  
Scheid MP  Woodgett JR 《FEBS letters》2003,546(1):108-112
Over the past decade, protein kinase B (PKB, also termed Akt) has emerged as an important signaling mediator between extracellular cues and modulation of gene expression, metabolism, and cell survival. The enzyme is tightly controlled and consequences of its deregulation include loss of growth control and oncogenesis. Recent work has better characterized the mechanism of PKB activation, including upstream regulators and secondary binding partners. This minireview refreshes some old concepts with new twists and highlights current outstanding questions.  相似文献   

6.
Platelets, which play a central role in thrombosis and hemostasis, develop from megakaryocytes. Signal transduction originated from the megakaryocyte growth and development factor, the Mpl ligand, which leads to megakaryocyte differentiation, polyploidization, and maturation, has been gradually characterized. In this study, we report the inducibility of Mst1, a recently described serine/threonine kinase, by Mpl ligand and the effect of its induced expression on megakaryocyte differentiation. The steady‐state level of mst1 message and Mst1‐associated kinase activity increased in response to Mpl ligand. Ectopic expression of human mst1 in a mouse megakaryocytic cell line resulted in a drastic increase in DNA content per cell. Elevated expression of megakaryocyte differentiation markers, such as acetylcholine esterase, PF4, and GPIIb was also observed in hmst1‐expressing cells. Activation of p38 MAPK, a known downstream effector of Mst1, was shown to be required for polyploidization, but not for enhanced expression of differentiation markers. Our study thus designates Mst1 as a Mpl ligand‐responsive signaling molecule that promotes induction of lineage‐specific cellular programming. J. Cell. Biochem. 76:44–60, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Zou W  Li ZY  Li CL  Cui ZC 《生理科学进展》2000,31(2):120-124
蛋白激酶B(PKB)是原癌基因c-akt的表达产物,它参与由生长因子激活的经磷脂磷肌醇3-激酶(PI3K)介导的信号转导过程。与许多蛋白激酶相似,PKB分子具有一特殊的AH/PH结构域(AH/PHdomain),后者能介导信号分子间的相互作用。PKB是PI3K直接的靶蛋白。PI3K产生的脂类第二信使PI-3,4,P2和PI-3,4,5-P3等均能与PKB和磷酸肌醇依赖性蛋白激酶(PDK)的AH/P  相似文献   

8.
Proteolytic cleavage of protein kinase C (PKC) under cell-free conditions generates a co-factor independent, free catalytic subunit (PKM). However, the difficulty in visualizing PKM in intact cells has generated controversy regarding its physiological relevance. In the present study, treatment of SH-SY-5Y cells with 2-O-tetradecanoylphorbol 13-acetate resulted in complete down-regulation of PKC within 24 h without detection of PKM. By contrast, low levels of PKM were transiently detected following ionophore-mediated calcium influx under conditions which induced no detectable PKC loss. PKM was not detected during rapid cell-free degradation of partially purified SH-SY-5Y PKCα by purified human brain mM calpain. However, when the kinetics of PKC degradation were slowed by lowering levels of calpain, PKM was transiently detected. PKM was also only transiently observed following calpain-mediated degradation of purified rat brain PKCα. Densitometric analyses indicated that, once formed, PKM was degraded approximately 10 times faster than PKC. These data provide an explanation as to why PKM is difficult to observe in situ, and indicate that PKM should not be considered as an ‘unregulated’ kinase, since its persistence is apparently strictly regulated by proteolysis.  相似文献   

9.
10.
We employed the constitutive BCK1-20 allele of the gene for the MAP kinase kinase kinase (MAPKKK) in the yeast Pkc signal transduction pathway to develop a genetic screen for mutants in genes encoding upstream components. Transposon mutagenesis yielded a mutant that was completely dependent on the active allele in the absence of osmotic stabilization. The transposon had integrated at the yeast SLG1 (HCS77) locus. This gene encodes a putative membrane protein. Haploid slg1 deletion strains are sensitive to caffeine, as expected for mutants in the Pkc pathway, as well as a variety of other drugs. The response to elevated temperatures and the dependence on osmotic stabilization depends on the genetic background. Thus, in the strain used for mutagenesis, disruption of SLG1 causes the cells to become non-viable in the absence of osmotic stabilization at both 30° C and 37° C. In a different genetic background this phenotype was not observed. Sensitivity of the haploid deletion mutants to caffeine can be partially suppressed by overexpression of genes for other components of the Pkc pathway, such as PKC1, SLT2, ROM2, and STE20. In addition, a SLG1-lacZ reporter construct shows higher expression in the presence of caffeine or magnesium chloride in a wild-type diploid background. Received: 2 December 1997 / Accepted: 15 December 1997  相似文献   

11.
Production of the glycopeptide antibiotic A47934 by Streptomyces toyocaensis NRRL 15009 begins in the late exponential phase in liquid culture and peaks in the early stationary phase. The pattern of cellular phosphoprotein production changes upon onset of A48934 production with the appearance of several novel phosphoproteins only when an antibiotic is being produced. Phosphoamino acid analysis revealed that S. toyocaensis NRRL 15009 produces proteins phosphorylated on His, Ser, Thr and Tyr, with most being membrane-associated. Addition of the isoflavones genistein or quercetin abolishes A47934 production in liquid culture and sporulation on solid medium. Furthermore, genistein slows the onset of inducible glycopeptide antibiotic resistance in S. toyocaensis NRRL 15009. These results support the participation of protein kinase pathways in A47934 biosynthesis and resistance and cell differentiation in S. toyocaensis NRRL 15009.  相似文献   

12.
As a first step towards understanding the process of blue light perception, and the signal transduction mechanisms involved, in Neurospora crassa we have used a pharmacological approach to screen a wide range of second messengers and chemical compounds known to interfere with the activity of well-known signal transducing molecules in vivo. We tested the influence of these compounds on the induction of the al-3 gene, a key step in light-induced carotenoid biosynthesis. This approach has implicated protein kinase C (PKC) as a component of the light transduction machinery. The conclusion is based on the effects of specific inhibitors (calphostin C and chelerythrine chloride) and activators of PKC (1,2-dihexanoyl-sn-glycerol). During vegetative growth PKC may be responsible for desensitization to light because inhibitors of the enzyme cause an increase in the total amount of mRNA transcribed after illumination. PKC is therefore proposed here to be an important regulator of transduction of the blue light signal, and may act through modification of the protein White Collar-1, which we show to be a substrate for PKC in N. crassa. Received: 4 December 1998 / Accepted: 21 May 1999  相似文献   

13.
C4 photosynthesis is functionally dependent on metabolic interactions between mesophyll- and bundle-sheath cells. Although the C4 cycle is biochemically well understood, many aspects of the regulation of enzyme activities, gene expression and cell differentiation are elusive. Protein kinases are likely involved in these regulatory processes, providing links to hormonal, metabolic and developmental signal-transduction pathways. Here we describe the cloning and characterization of 14 different putative protein kinase leaf cDNA clones from the C4 plant Sorghum bicolor. These genes belong to three different protein kinase subfamilies: ribosomal protein S6 kinases, SNF1-like protein kinases, and receptor-like protein kinases. We report the partial cDNA sequences, mesophyll/bundle-sheath steady-state mRNA ratios, mesophyll/etiolated leaf steady-state mRNA ratios, and the positions of 14 protein kinase genes on the genetic map of S. bicolor. Only three of the protein kinase genes described here are expressed preferentially in mesophyll cells as compared with the bundle-sheath. Received: 16 January 1998 / Accepted: 3 April 1998  相似文献   

14.
Tyrosine phosphorylation in plants could be performed only by dual-specificity kinases. Arabidopsis thaliana dual-specificity protein kinase (AtSTYPK) exhibited strong preference for manganese over magnesium for its kinase activity. The kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors manganese dependent serine/threonine kinase domain, COG3642. His248 and Ser265 on COG3642 are conserved in AtSTYPK and the site-directed mutant, H248A showed loss of serine/threonine kinase activity. The protein kinase activity was abolished when Thr208 in the TEY motif and Thr293 of the activation loop were converted to alanine. The conversion of Thr284 in the activation loop to alanine resulted in an increased phosphorylation. This study reports the first identification of a manganese dependent dual-specificity kinase and the importance of Thr208, Thr284, and Thr293 residues in the regulation of kinase activity.  相似文献   

15.
In previous studies we have reported that gastrin exerts a trophic effect on rat colonic epithelial cells in vitro. The effect of gastrin appeared to be mediated through a protein kinase C mechanism. In this study, we have characterized the role of protein kinase C in the gastrin-induced stimulation. Gastrin, in a time- and dose-dependent manner, increased protein kinase C translocation from the cytosol to the membrane, an index of enzyme activation. Maximum translocation occurred in 1 to 2 min following exposure to gastrin (10−8 M), before declining back to baseline level within 5 min. Gastrin did not change total protein kinase C activity in the colonic cells. Staurosporine, an inhibitor of protein kinase C, totally abolished the basal as well as the gastrin-stimulated activity of protein kinase C. The tumor promoter phorbol 12-myristate 13-acetate also stimulated colonic epithelial protein kinase C. However, prolonged treatment of cells with phorbol inhibited their subsequent response to gastrin stimulation. The response to gastrin was also prevented by the gastrin receptor antagonist proglumide. These observations suggest that protein kinase C mediates the stimulatory effect of gastrin on colonic epithelial cells, possibly through a receptor mechanism.  相似文献   

16.
17.
18.
The protein kinase D family of enzymes consists of three isoforms: PKD1/PKCmu PKD2 and PKD3/PKCnu. They all share a similar architecture with regulatory sub-domains that play specific roles in the activation, translocation and function of the enzymes. The PKD enzymes have recently been implicated in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, metastasis, immune responses, apoptosis and cell proliferation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号