首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amarasinghe GK  Rosen MK 《Biochemistry》2005,44(46):15257-15268
Autoinhibited proteins serve key roles in many signal transduction pathways, and therefore proper regulation of these proteins is critical for normal cellular function. Proto-oncogene Vav1 is an autoinhibited guanine nucleotide exchange factor (GEF) for Rho family GTPases. The core autoinhibitory module of Vav1 consists of the catalytic Dbl homology (DH) domain bound through its active site to an alpha helix centered about Tyr174 in the Acidic (Ac) region of the protein. Phosphorylation of Tyr174 and two other tyrosines in the Ac region, Tyr142 and Tyr160, relieves autoinhibition and activates the catalytic DH domain. In this study, we use biochemical and structural analyses of the Vav1 Ac and DH domains to examine the kinetic and thermodynamic properties of Vav1 activation by the Src family kinase, Lck, and the role of the Lck SH2 domain in this process. We find that in the Ac-DH fragment of Vav1, Tyr174, but not Tyr142 or Tyr160, is protected from phosphorylation by interactions with the DH domain. Binding of the Lck SH2 domain to phosphorylated Tyr142 increases kcat/KM for Tyr174 by 4-fold, likely because the kinase domain can act on the substrate effectively in an intramolecular fashion. These studies of the autoinhibited Ac-DH module provide the foundation for a quantitative structural and thermodynamic understanding of the regulation of full length Vav1. Moreover, kinetic pathways involving initial interactions with exposed sites or "access points", as observed here for Vav1, may be generally important in the regulation of many autoinhibited proteins.  相似文献   

2.
Aghazadeh B  Lowry WE  Huang XY  Rosen MK 《Cell》2000,102(5):625-633
Rho-family GTPases transduce signals from receptors leading to changes in cell shape and motility, mitogenesis, and development. Proteins containing the Dbl homology (DH) domain are responsible for activating Rho GTPases by catalyzing the exchange of GDP for GTP. Receptor-initiated stimulation of Dbl protein Vav exchange activity involves tyrosine phosphorylation. We show through structure determination that the mVav1 DH domain is autoinhibited by an N-terminal extension, which lies in the GTPase interaction site. This extension contains the Tyr174 Src-family kinase recognition site, and phosphorylation or truncation of this peptide results in stimulation of GEF activity. NMR spectroscopy data show that the N-terminal peptide is released from the DH domain and becomes unstructured upon phosphorylation. Thus, tyrosine phosphorylation relieves autoinhibition by exposing the GTPase interaction surface of the DH domain, which is obligatory for Vav activation.  相似文献   

3.
4.
5.
Phospholipase C-gamma1 (PLC-gamma1) activation depends on a heterotrimeric complex of adaptor proteins composed of LAT, Gads, and SLP-76. Upon T cell receptor stimulation, a portion of PLC-gamma1 is recruited to a detergent-resistant membrane fraction known as the glycosphingolipid-enriched membrane microdomains (GEMs), or lipid rafts, to which LAT is constitutively localized. In addition to LAT, PLC-gamma1 GEM recruitment depended on SLP-76, and, in particular, required the Gads-binding domain of SLP-76. The N-terminal tyrosine phosphorylation sites and P-I region of SLP-76 were not required for PLC-gamma1 GEM recruitment, but were required for PLC-gamma1 phosphorylation at Tyr(783). Thus, GEM recruitment can be insufficient for full activation of PLC-gamma1 in the absence of a second SLP-76-mediated event. Indeed, a GEM-targeted derivative of PLC-gamma1 depended on SLP-76 for T cell receptor-induced phosphorylation at Tyr783 and subsequent NFAT activation. On a biochemical level, SLP-76 inducibly associated with both Vav and catalytically active ITK, which efficiently phosphorylated a PLC-gamma1 fragment at Tyr783 in vitro. Both associations were disrupted upon mutation of the N-terminal tyrosine phosphorylation sites of SLP-76. The P-I region deletion disrupted Vav association and reduced SLP-76-associated kinase activity. A smaller deletion within the P-I region, which does not impair PLC-gamma1 activation, did not impair the association with Vav, but reduced SLP-76-associated kinase activity. These results provide new insight into the multiple roles of SLP-76 and the functional importance of its interactions with other signaling proteins.  相似文献   

6.
7.
The guanine nucleotide exchange factor (GEF) Vav1 is an essential signal transducer protein in the hematopoietic system, where it is expressed physiologically. It is also involved in several human malignancies. Tyrosine phosphorylation at the Vav1 amino terminus plays a central role in regulating its activity; however, the role of carboxyl terminal tyrosine residues is unknown. We found that mutation of either Tyr-826 (Y826F) or Tyr-841 (Y841F) to phenylalanine led to loss of Vav1 GEF activity. When these Vav1 mutants were ectopically expressed in pancreatic cancer cells lacking Vav1, they failed to induce growth in agar, indicating loss of transforming potential. Furthermore, although Y841F had no effect on Vav1-stimulated nuclear factor of activated T cells (NFAT) activity, Y826F doubled NFAT activity when compared with Vav1, suggesting that Tyr-826 mediates an autoinhibitory effect on NFAT activity. SH2 profiling revealed that Shc, Csk, Abl, and Sap associate with Tyr-826, whereas SH2-B, Src, Brk, GTPase-activating protein, and phospholipase C-γ associate with Tyr-841. Although the mutations in the Tyr-826 and Tyr-841 did not affect the binding of the carboxyl SH3 of Vav1 to other proteins, binding to several of the proteins identified by the SH2 profiling was lost. Of interest is Csk, which associates with wild-type Vav1 and Y841F, yet it fails to associate with Y826F, suggesting that loss of binding between Y826F and Csk might relieve an autoinhibitory effect, leading to increased NFAT. Our data indicate that GEF activity is critical for the function of Vav1 as a transforming protein but not for NFAT stimulation. The association of Vav1 with other proteins, detected by SH2 profiling, might affect other Vav1-dependent activities, such as NFAT stimulation.  相似文献   

8.
Activation of lck-fyn kinases during T cell receptor signaling leads to Vav phosphorylation, activation of downstream targets including Rac1, and a transient decline in ezrin and moesin phosphorylation. We have shown that age increases Rac1 activity and lowers ezrin and moesin phosphorylation in resting mouse CD4 cells, changes that could be the results of alterations in lck-Vav signaling. Analysis of Vav in CD4 cells from old mice shows increases in the phosphorylation of two key regulatory residues, Tyr160 and Tyr174, suggesting enhancement of Vav GTPase activity. In addition, analysis of lck status also shows age-related increases in phosphorylation of two key residues, Tyr394 and Tyr505, which have opposite effects on lck function. These changes in lck-Vav signals in resting CD4 cells may contribute in turn to age-related increases in Rac1 activity and declines in phosphorylation of cytoskeletal proteins including Ezrin and Moesin.  相似文献   

9.
10.
Mer belongs to the Mer/Axl/Tyro3 receptor tyrosine kinase family, which regulates immune homeostasis in part by triggering monocyte ingestion of apoptotic cells. Mutations in Mer can also cause retinitis pigmentosa, again due to defective phagocytosis of apoptotic material. Although, some functional aspects of Mer have been deciphered, how receptor activation lead to the physiological consequences is not understood. By using yeast two-hybrid assays, we identified the carboxyl-terminal region of the guanine nucleotide-exchange factor (GEF) Vav1 as a Mer-binding partner. Unlike similar (related) receptors, Mer interacted with Vav1 constitutively and independently of phosphotyrosine, yet the site of binding localized to the Vav1 SH2 domain. Mer activation resulted in tyrosine phosphorylation of Vav1 and release from Mer, whereas Vav1 was neither phosphorylated nor released from kinase-dead Mer. Mutation of the Vav1 SH2 domain phosphotyrosine coordinating Arg-696 did not alter Mer/Vav1 constitutive binding or Vav1 tyrosine phosphorylation but did retard Vav1 release from autophosphorylated Mer. Ligand-dependent activation of Mer in human monocytes led to Vav1 release and stimulated GDP replacement by GTP on RhoA family members. This unusual constitutive, SH2 domain-dependent, but phosphotyrosine-independent, interaction and its regulated local release and subsequent activation of Rac1, Cdc42, and RhoA may explain how Mer coordinates precise cytoskeletal changes governing the ingestion of apoptotic material by macrophages and pigmented retinal epithelial cells.  相似文献   

11.
Vav is a recently described proto-oncogene expressed only in hematopoietic cells which contains an SH2 and two SH3 domains and shares homology with the Dbl GDP-GTP exchange factor and BCR. p95Vav is phosphorylated on tyrosine residues in response to stimulation of the T cell antigen receptor, cross-linking of IgE or IgM receptors and stimulation of immature hematopoietic cells by Steel factor. Monoclonal antibodies to human Vav were generated and used to examine the events which regulate tyrosine phosphorylation of p95Vav in myeloid cells. In the factor-dependent MO7e cell line, p95Vav was rapidly phosphorylated on tyrosine residues in a dose- and time-dependent manner by GM-CSF, IL-3 and Steel factor. Introduction of the BCR/ABL oncogene into this cell line resulted in factor-independent proliferation and constitutive phosphorylation of p95Vav. Tyrosine phosphorylation of p95Vav was also substantially increased by treatment of cytokine-deprived cells with the tyrosine phosphatase inhibitor sodium vanadate. Since many of the cytokines known to induce tyrosine phosphorylation of p95Vav are also known to activate JAK family tyrosine kinases, we looked for an interaction of p95Vav with JAK kinases. p95Vav co-precipitated with JAK2 in MO7e cells stimulated with GM-CSF, but not in unstimulated cells. Also, JAK2 was found to be constitutively associated with p95Vav in vivo when expressed at high levels in insect cells using baculovirus vectors. A fusion protein consisting of glutathione-S-transferase and the SH2 domain of p95Vav (GST-Vav-SH2) precipitated JAK2, suggesting that this interaction is mediated by the SH2 domain of p95Vav.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We recently identified Vav as a Ras-activating guanine nucleotide exchange factor (GEF) stimulated by a T-cell antigen receptor-coupled protein tyrosine kinase (PTK). Here, we describe a novel, protein kinase-independent alternative pathway of Vav activation. Phorbol ester, 1,2-diacylglycerol, or ceramide treatment of intact T cells, Vav immunoprecipitates, or partially purified Vav generated by in vitro translation or COS-1 cell transfection stimulated the Ras exchange activity of Vav in the absence of detectable tyrosine phosphorylation. GEF activity of gel-purified Vav was similarly stimulated by phorbol myristate acetate (PMA). Stimulation was resistant to PTK and protein kinase C inhibitors but was blocked by calphostin, a PMA and diacylglycerol antagonist. In vitro-translated Vav lacking its cysteine-rich domain, or mutated at a single cysteine residue within this domain (C528A), was not stimulated by PMA but was fully activated by p56lck. This correlated with increased binding of radiolabeled phorbol ester to COS-1 cells expressing wild-type, but not C528A-mutated, Vav. Thus, Vav itself is a PMA-binding and -activated Ras GEF. Recombinant interleukin-1 alpha stimulated Vav via this pathway, suggesting that diglyceride-mediated Vav activation may couple PTK-independent receptors which stimulate production of lipid second messengers to Ras in hematopoietic cells.  相似文献   

13.
The Zap70 protein tyrosine kinase controls TCR-linked signal transduction pathways and is critical for T cell development and responsiveness. Following engagement of TCR, the Zap70 undergoes phosphorylation on multiple tyrosine residues that are implicated in the regulation of its catalytic activity and interaction with signaling effector molecules downstream of the TCR. We have shown previously that the CT10 regulator of kinase II (CrkII) adapter protein interacts with tyrosine-phosphorylated Zap70 in TCR-engaged T cells, and now extend these studies to show that Tyr315 in the Zap70 interdomain B region is the site of interaction with CrkII. A point mutation of Tyr315 (Y315F) eliminated the CrkII-Zap70 interaction capacity. Phosphorylation of Tyr315 and Zap70 association with CrkII were both dependent upon the Lck protein tyrosine kinase. Previous studies demonstrated the Tyr315 is the Vav-Src homology 2 (SH2) binding site, and that replacement of Tyr315 by Phe impaired the function of Zap70 in TCR signaling. However, fluorescence polarization-based binding studies revealed that the CrkII-SH2 and the Vav-SH2 bind a phosphorylated Tyr315-Zap70-derived peptide with affinities of a similar order of magnitude (Kd of 2.5 and 1.02 microM, respectively). The results suggest therefore that the biological functions attributed to the association of Zap70 with Vav following T cell activation may equally reflect the association of Zap70 with CrkII, and further support a regulatory role for CrkII in the TCR-linked signal transduction pathway.  相似文献   

14.
src homology region 2 and 3 (SH2 and SH3) domains are conserved noncatalytic regions originally described in cytoplasmic tyrosine kinases and subsequently identified in phospholipase C gamma 1 (PLC gamma 1), GTPase-activating protein of ras, and other signaling proteins. Although numerous studies indicate that SH2 domains promote protein-protein interactions by specific binding to tyrosine phosphorylated proteins, the function of SH3 domains is not known. The SH2 domain of PLC gamma 1 binds to certain tyrosine-phosphorylated growth factor receptors, and following phosphorylation on Tyr783 the enzymatic activity of PLC gamma 1 is enhanced, leading to phosphatidylinositol hydrolysis. To determine the functional role of the SH2 domain(s) on substrate phosphorylation in quantitative terms, we have expressed in Escherichia coli PLC gamma 1 constructs encoding the region containing Tyr783 and Tyr771, their two flanking SH2 domains and the SH3 domain, and five different deletion mutants of this region. These six proteins were purified and subjected to quantitative phosphorylation by the epidermal growth factor receptor (EGFR). Analysis of the kinetics of substrate phosphorylation revealed similar Vmax for the phosphorylation of the various mutant proteins. However, the affinity was enhanced for substrates containing SH2 domains: from S0.5 (average apparent Km) of 110 microM to S0.5 of 20 microM with the addition of a single SH2 domain and S0.5 of 3-4 microM for mutants containing two SH2 domains. The presence of the SH3 domain did not influence the apparent Km of substrate phosphorylation. These results demonstrate that the presence of the SH2 domain in PLC gamma 1 lowers the apparent Km (increases the affinity) of substrate phosphorylation by the EGFR, thereby facilitating PLC gamma 1 phosphorylation and activation.  相似文献   

15.
16.
Vav2 is a member of the Vav family that serves as guanine nucleotide exchange factors (GEFs) for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the EGF receptor. Here, we show that in EGF-treated COS7 cells Vav2 is phosphorylated on tyrosine residues and associates with the EGF receptor. In addition, introducing point mutations into the SH2 domain of green fluorescens protein (GFP)-Vav2 fusion protein leads to the loss of Vav2 tyrosine phosphorylation in response to EGF. To investigate further the mechanism of Vav2 phosphorylation, N-terminal (NT) domain of Vav2 was transiently expressed in COS7 cells as GFP fusion protein. Whereas the NT domain of Vav2 is a preferred substrate for the activated EGF receptor in vitro, we could not detect tyrosine phosphorylation of the GFP-NT construct in EGF-treated cells. However, when the SH2 domain of Vav2 was fused to its NT domain, NT domain proved to be a substrate for the EGF receptor in vivo. These data suggest that membrane-targeting of Vav2 through its SH2 domain is an important event in the phosphorylation and activation of Vav2 in response to EGF.  相似文献   

17.
18.
To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate the signaling machinery of the host B-cell.  相似文献   

19.
Vav is a guanine nucleotide exchange factor for the Rho/Rac family predominantly expressed in hematopoietic cells and implicated in cell proliferation and cytoskeletal organization. The oncogenic tyrosine kinase Bcr-Abl has been shown to activate Rac-1, which is important for Bcr-Abl induced leukemogenesis. Previous studies by Matsuguchi et al. (Matsuguchi, T., Inhorn, R. C., Carlesso, N., Xu, G., Druker, B., and Griffin, J. D. (1995) EMBO J. 14, 257-265) describe enhanced phosphorylation of Vav in Bcr-Abl-expressing Mo7e cells yet fail to demonstrate association of the two proteins. Here, we report the identification of a direct complex between Vav and Bcr-Abl in yeast, in vitro and in vivo. Furthermore, we show tyrosine phosphorylation of Vav by Bcr-Abl. Mutational analysis revealed that the SH2 domain and the C-terminal SH3 domain as well as a tetraproline motif directly adjacent to the N-terminal SH3 domain of Vav are important for establishing this phosphotyrosine dependent interaction. Activation of Rac-1 by Bcr-Abl was abrogated by co-expression of the Vav C terminus encoding the SH3-SH2-SH3 domains as a dominant negative construct. Bcr-Abl transduced primary bone marrow from Vav knock-out mice showed reduced proliferation in a culture cell transformation assay compared with wild-type bone marrow. These results suggest, that Bcr-Abl utilizes Vav as a guanine nucleotide exchange factor to activate Rac-1 in a process that involves a folding mechanism of the Vav C terminus. Given the importance of Rac-1 activation for Bcr-Abl-mediated leukemogenesis, this mechanism may be crucial for the molecular pathogenesis of chronic myeloid leukemia and of importance for other signal transduction pathways leading to the activation of Rac-1.  相似文献   

20.
The Crk family of adaptor proteins participate in diverse signaling pathways that regulate growth factor-induced proliferation, anchorage-dependent DNA synthesis, and cytoskeletal reorganization, important for cell adhesion and motility. Using kidney epithelial 293T cells for transient co-transfection studies and the nerve growth factor (NGF)-responsive PC12 cell line as a model system for neuronal morphogenesis, we demonstrate that the non-receptor tyrosine kinase c-Abl is an intermediary for NGF-inducible c-Crk II phosphorylation on the negative regulatory Tyr(222). Transient expression of a c-Crk II Tyr(222) point mutant (c-Crk Y222F) in 293T cells induces hyperphosphorylation of paxillin on Tyr(31) and enhances complex formation between c-Crk Y222F and paxillin as well as c-Crk Y222F and c-Abl, suggesting that c-Crk II Tyr(222) phosphorylation induces both the dissociation of the Crk SH2 domain from paxillin and the Crk SH3 domain from c-Abl. Interestingly, examination of the early kinetics of NGF stimulation in PC12 cells showed that c-Crk II Tyr(222) phosphorylation preceded paxillin Tyr(31) phosphorylation, followed by a transient initial dissociation of the c-Crk II paxillin complex. PC12 cells overexpressing c-Crk Y222F manifested a defect in cellular adhesion and neuritogenesis that led to detachment of cells from the extracellular matrix, thus demonstrating the biological significance of c-Crk II tyrosine phosphorylation in NGF-dependent morphogenesis. Whereas previous studies have shown that Crk SH2 binding to paxillin is critical for cell adhesion and migration, our data show that the phosphorylation cycle of c-Crk II determines its dynamic interaction with paxillin, thereby regulating turnover of multiprotein complexes, a critical aspect of cytoskeletal plasticity and actin dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号