首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the patterns and rates of migration among habitat patches for five species of checkerspot butterflies (Lepidoptera: Melitaeini) in Finland: Euphydryas aurinia, E. maturna, Melitaea cinxia, M. diamina and M. athalia. We applied the virtual migration (VM) model to mark-release-recapture data collected from multiple populations. The model includes parameters describing migration and survival rates and how they depend on the areas and connectivities of habitat patches. The number of individuals captured varied from 73 to 1,123, depending on species and sex, and the daily recapture probabilities varied between 0.09-0.52. The VM model fitted the data quite well. The results show that the five species are broadly similar in their movement rates and patterns, though, e.g. E. maturna tends to move shorter distances than the other species. There is no indication of any phylogenetic component in the parameter values. The parameter values estimated for each species suggest that a large percentage (80-90%) of migration events were successful in the landscapes that were studied. The area of the habitat patch had a substantial effect on emigration and immigration rates, such that butterflies were more likely to leave small than large patches and large patches were more likely than small patches to receive immigrants.  相似文献   

2.
The influence of temporal and spatial heterogeneity in seed availability on the foraging behaviour of the harvester ant Messor arenarius was studied in an arid shrubland in the Negev Desert, Israel. The study investigated the implications of behavioural responses to heterogeneity in seed availability for the seed predation process and the potential for feedback effects on vegetation. Vegetation and seed rain were monitored across two landscape patch types (shrub patches and inter-shrub patches) in 1997. Shrub patches were shown to have higher plant and seed-rain density than inter-shrub patches. Patch use and seed selection by M. arenarius foragers were monitored through the spring, summer and autumn of 1997. After a pulse of seed production in the spring, the ants exhibited very narrow diet breadth, specialising on a single annual grass species, Stipa capensis. At this time, ants were foraging and collecting seeds mainly from inter-shrub patches. In the summer, diet breadth broadened and use of shrub patches increased, although the rate of seed collection per unit area was approximately equal in the two patch types. The increase in the use of shrub patches was due to colony-level selection of foraging areas with relatively high shrub cover and an increase in the use of shrub patches by individual foragers. In the autumn, a pulse of seed production by the shrub species Atractylis serratuloides and Noaea mucronata led to a reduction in diet breadth as foragers specialised on these species. During this period, foragers exhibited a large increase in the proportion of time spent in shrub patches and in the proportion of food items collected from shrub patches. The seasonal patterns in foraging behaviour showed linked changes in seed selection and patch use resulting in important differences in the seed predation process between the two landscape patch types. For much of the study period, there was higher seed predation pressure on the inter-shrub patches, which were of relatively low productivity compared with the shrub patches. This suggests that the seed predation process may help maintain the spatial heterogeneity in the density of ephemeral plants in the landscape.  相似文献   

3.
Abstract.  1. Metapopulation and island biogeography theory assume that landscapes consist of habitat patches set in a matrix of non-habitat. If only a small proportion of species conform to the patch–matrix assumptions then metapopulation theory may only describe special cases rather than being of more general ecological importance.
2. As an initial step towards understanding the prevalence of metapopulation dynamics in a naturally fragmented landscape, the distribution of beetle species in three replicates of three habitat types was examined, including rainforest and eucalypt forest (the habitat patches), and buttongrass sedgeland (the matrix), in south-west Tasmania, Australia.
3. Ordination methods indicated that the buttongrass fauna was extremely divergent from the fauna of forested habitats. Permutation tests showed that the abundance of 13 of 17 commonly captured species varied significantly among habitats, with eight species confined to eucalypts or rainforest, and three species found only in buttongrass. Approximately 60% of species were confined to forested habitat implying that metapopulation theory has the potential to be very important in the forest–buttongrass landscape.
4. Although floristically the rainforest and eucalypts were extremely distinct, the beetle faunas from eucalypts and rainforests overlapped substantially. Therefore rainforest patches connected by eucalypt forest represent continuous habitat for most species.
5. Other studies report a wide range of values for the proportion of patch-specific species in fragmented landscapes. Understanding the environmental or historical conditions under which a high proportion of species become patch specialists would help to identify where spatial dynamic theory may be especially applicable, and where habitat loss and fragmentation poses the greatest threat to biodiversity.  相似文献   

4.
Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande) taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch) and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.  相似文献   

5.
Ecosystem engineering - the physical modification of habitats by organisms - has been proposed as an important mechanism for maintaining high species richness at the landscape scale by increasing habitat heterogeneity. Dams built by beaver (Castor canadensis) dramatically alter riparian landscapes throughout much of North America. In the central Adirondacks, New York, USA, ecosystem engineering by beaver leads to the formation of extensive wetland habitat capable of supporting herbaceous plant species not found elsewhere in the riparian zone. We show that by increasing habitat heterogeneity, beaver increase the number of species of herbaceous plants in the riparian zone by over 33% at a scale that encompasses both beaver-modified patches and patches with no history of beaver occupation. We suggest that ecosystem engineers will increase species richness at the landscape scale whenever there are species present in a landscape that are restricted to engineered habitats during at least some stages of their life cycle.  相似文献   

6.
Mounting theoretical and empirical evidence shows that matrix heterogeneity may have contrasting effects on metapopulation dynamics by contributing to patch isolation in nontrivial ways. We analyze the movement properties during interpatch dispersal in a metapopulation of Iberian lynx (Lynx pardinus). On a daily temporal scale, lynx habitat selection defines two types of matrix habitats where individuals may move: open and dispersal habitats (avoided and used as available, respectively). There was a strong and complex impact of matrix heterogeneity on movement properties at several temporal scales (hourly and daily radiolocations and the entire dispersal event). We use the movement properties on the hourly temporal scale to build a simulation model to reconstruct individual dispersal events. The two most important parameters affecting model predictions at both the individual (daily) and metapopulation scales were related to the movement capacity (number of movement steps per day and autocorrelation in dispersal habitat) followed by the parameters representing the habitat selection in the matrix. The model adequately reproduced field estimates of population-level parameters (e.g., interpatch connectivity, maximum and final dispersal distances), and its performance was clearly improved when including the effect of matrix heterogeneity on movement properties. To assume there is a homogeneous matrix results in large errors in the estimate of interpatch connectivity, especially for close patches separated by open habitat or corridors of dispersal habitat, showing how important it is to consider matrix heterogeneity when it is present. Movement properties affect the interaction of dispersing individuals with the landscape and can be used as a mechanistic representation of dispersal at the metapopulation level. This is so when the effect of matrix heterogeneity on movement properties is evaluated under biologically meaningful spatial and temporal scales.  相似文献   

7.
《Biological Control》2004,29(2):207-214
The goal of this study was to evaluate the biological control program of leafy spurge (Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed, but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year’s stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.  相似文献   

8.
Interpretation of spatially structured population systems is critically dependent on levels of migration between habitat patches. If there is considerable movement, with each individual visiting several patches, there is one ”patchy population”; if there is intermediate movement, with most individuals staying within their natal patch, there is a metapopulation; and if (virtually) no movement occurs, then the populations are separate (Harrison 1991, 1994). These population types actually represent points along a continuum of much to no mobility in relation to patch structure. Therefore, interpretation of the effects of spatial structure on the dynamics of a population system must be accompanied by information on mobility. We use empirical data on movements by ringlet butterflies, Aphantopus hyperantus, to investigate two key issues that need to be resolved in spatially-structured population systems. First, do local habitat patches contain largely independent local populations (the unit of a metapopulation), or merely aggregations of adult butterflies (as in patchy populations)? Second, what are the effects of patch area on migration in and out of the patches, since patch area varies considerably within most real population systems, and because human landscape modification usually results in changes in habitat patch sizes? Mark-release-recapture (MRR) data from two spatially structured study systems showed that 63% and 79% of recaptures remained in the same patch, and thus it seems reasonable to call both systems metapopulations, with some capacity for separate local dynamics to take place in different local patches. Per capita immigration and emigration rates declined with increasing patch area, while the resident fraction increased. Actual numbers of emigrants either stayed the same or increased with area. The effect of patch area on movement of individuals in the system are exactly what we would have expected if A. hyperantus were responding to habitat geometry. Large patches acted as local populations (metapopulation units) and small patches simply as locations with aggregations (units of patchy populations), all within 0.5 km2. Perhaps not unusually, our study system appears to contain a mixture of metapopulation and patchy-population attributes.  相似文献   

9.
The False Ringlet (Coenonympha oedippus) is a European butterfly species, endangered due to the severe loss and fragmentation of its habitat. In Hungary, two remaining populations of the butterfly occur in lowland Purple Moorgrass meadows. We studied a metapopulation occupying twelve habitat patches in Central Hungary. Our aim was to reveal what measures of habitat quality affect population size and density of this metapopulation, estimate dispersal parameters and describe phenology of subpopulations. Local population sizes and dispersal parameters were estimated from an extensive mark–release–recapture dataset, while habitat quality was characterized by groundwater level, cover of grass tussocks, bush cover, height of vegetation and grass litter at each habitat patch. The estimated size of the metapopulation was more than 3,000 individuals. We estimated a low dispersal capacity, especially for females, indicating a very low probability of (re)colonization. Butterfly abundance and density in local populations increased with higher grass litter, lower groundwater level and larger area covered by tussocks. We suppose that these environmental factors affect butterfly abundance by determining the microclimatic conditions for both larvae and adult butterflies. Our results suggest that the long-term preservation of the studied metapopulation needs the maintenance of high quality habitat patches by appropriate mowing regime and water regulation. Management also should facilitate dispersal to strengthen metapopulation structure with creating stepping-stones or gradually increase habitat quality in present matrix.  相似文献   

10.
The regional persistence of species subject to local population colonization and extinction necessarily depends on how landscape features and disturbance affect metapopulation dynamics. Here, we characterize the metapopulation structure and short-term dynamics ofPolygonella basiramia. This rare, short-lived perennial herb is endemic to Florida scrublands and lacks a seed bank. Fires create the open sand gaps within a shrub matrix that support this species but also kill established plants. Thus, persistence depends on frequent colonization of unoccupied gaps. We are monitoring population dynamics within and among 1204 gaps distributed among 19 shrub patches. Considerable subpopulation turnover is evident at the gap level with rates of gap extinction exceeding rates of colonization in the first year. Whether declines in overall abundance continue is likely to depend on patterns of disturbance and regional stochasticity in this dynamic landscape.Polygonella is more likely to occupy larger and less isolated gaps, demonstrating that landscape features and disturbance strongly affect metapopulation dynamics. BecausePolygonella basiramia displays characteristics, occupancy patterns, and turnover dynamics consistent with metapopulation theory, it represents a model system for studying plant metapopulations.  相似文献   

11.
Analytically tractable metapopulation models usually assume that every patch is identical, which limits their application to real metapopulations. We describe a new single species model of metapopulation dynamics that allows variation in patch size and position. The state of the metapopulation is defined by the presence or absence of the species in each patch. For a system of n patches, this gives 2n possible states. We show how to construct and analyse a matrix describing transitions between all possible states by first constructing separate extinction and colonisation matrices. We illustrate the model′s application to metapopulations by considering an example of malleefowl, Leipoa ocellata, in southern Australia, and calculate extinction probabilities and quasi-stationary distributions. We investigate the relative importance of modelling the particular arrangement of patches and the variation in patch sizes for this metapopulation and we use the model to examine the effects of further habitat loss on extinction probabilities.  相似文献   

12.
Single-species metapopulation dynamics: concepts, models and observations   总被引:24,自引:0,他引:24  
This paper outlines a conceptual and theoretical framework for single-species metapopulation dynamics based on the Levins model and its variants. The significance of the following factors to metapopulation dynamics are explored: evolutionary changes in colonization ability; habitat patch size and isolation; compensatory effects between colonization and extinction rates; the effect of immigration on local dynamics (the rescue effect); and heterogeneity among habitat patches. The rescue effect may lead to alternative stable equilibria in metapopulation dynamics. Heterogeneity among habitat patches may give rise to a bimodal equilibrium distribution of the fraction of patches occupied in an assemblage of species (the core-satellite distribution). A new model of incidence functions is described, which allows one to estimate species' colonization and extinction rates on islands colonized from mainland. Four distinct kinds of stochasticity affecting metapopulation dynamics are discussed with examples. The concluding section describes four possible scenarios of metapopulation extinction.  相似文献   

13.
Animal interpatch movement and spatial distribution are known to be influenced substantially by the composition of the landscape matrix, but little is known about the underlying mechanisms. In previous mark–recapture experiments we have found that the rates of emigration and immigration for the planthopper Prokelisia crocea are greater within a matrix composed of the introduced grass smooth brome (Bromus inermis) than a mudflat matrix. Additionally, census data indicated that individuals aggregate near the edge of host‐plant patches (prairie cordgrass; Spartina pectinata) bordered by mudflat, but not in patches bordered by nonhost grasses such as brome. Here, we investigate the mechanistic basis of these matrix effects by tracking the individual movements of planthoppers released at the edge of brome‐ and mudflat‐bordered cordgrass patches, and within homogeneous habitats of each type (cordgrass, brome, and mudflat). We found that patch edges bordered by brome were three times more permeable to emigration than mudflat‐bordered edges. Also, planthoppers exhibited no tendency to avoid edges by moving away (i.e. towards the patch interior). Within homogeneous habitats, comparison of the fractal dimension of movement paths revealed that movement was more linear in mudflat than in brome or cordgrass. In addition, planthoppers exhibited greater step lengths (distance moved per 10‐min interval), shorter residency times (duration of pauses between movements), and greater rates of net linear displacement in mudflat than brome and cordgrass. We attribute the planthopper's distributional patterns within patches to the lower permeability of mudflat than nonhost grass edges and the absence of edge–avoidance behavior. Contrary to conventional wisdom that low‐resistance matrix types (e.g. those that promote high displacement rates) enhance interpatch dispersal rates, dispersal success may be higher in brome matrix because tortuous movement through this matrix increases the planthopper's rate of encounter with cordgrass patches.  相似文献   

14.
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape; to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913–958, 2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that, under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing thatmainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopperBryodema tuberculata.  相似文献   

15.
Animals in fragmented landscapes have a major challenge to move between high-quality habitat patches through lower-quality matrix. Two current mechanistic hypotheses that describe the movement used by animals outside of their preferred patches (e.g., high-quality habitat or home range) are the biased, correlated random walk (BCRW) and the foray loop (FL). There is also a variant of FL with directed movement (FLdm). While these have been most extensively tested on butterflies, they have never been tested simultaneously with data across a whole metapopulation and over multiple generations, two key scales for population dynamics. Using the pattern-oriented approach, we compare support for these competing hypotheses with a spatially explicit individual-based simulation model on an 11-year dataset that follows 12 patches of the federally endangered Fender’s blue butterfly (Plebejus icarioides fenderi) in Oregon’s Willamette Valley. BCRW and medium-scale FL and FLdm scenarios predicted the annual total metapopulation size for ≥9 of 12 patches as well as patch extinctions. The key difference, however, was that the FL scenarios predicted patch colonizations and persistence poorly, failing to adequately capture movement dynamics; BCRW and one FLdm scenario predicted the observed patch colonization and persistence with reasonable probabilities. This one FLdm scenario, however, had larger prediction intervals. BCRW, the biologically simplest and thus most parsimonious movement hypothesis, performed consistently well across all nine different tests, resulting in the highest quality metapopulation predictions for butterfly conservation.  相似文献   

16.
17.
《Ecography》2003,26(5):641-651
Elements of the landscape, such as patches of preferred habitat, matrix between patches, and corridors linking patches, differ as movement habitat for animals. To understand how landscape structure influences the movement and thus, population dynamics of animals, clear empirical knowledge on patterns of movement is needed. The Siberian flying squirrel inhabits spruce-dominated boreal forests from Finland to eastern Siberia. Numbers of flying squirrels have declined severely in Finland in past decades, probably due to modern forestry. We studied the movement of radio-collared adult flying squirrels in preferred (spruce forest) and in matrix habitat (open areas and other habitats with trees) in Finland 1997–2000, and determined whether the woodland strips connecting patches of preferred habitat could function as ecological corridors for flying squirrels.
Flying squirrels used woodland strips for inter-patch movements, but also used matrix with trees and were able to cross narrow open gaps. Males moved longer total distances and crossed edges more often than females. Males used matrix habitats for movement between spruce patches, and moved faster and more directly in the matrix than in the spruce forest. Females seldom changed spruce patches, but instead used the matrix for foraging. For both sexes probability of leaving the spruce forest patch correlated negatively with the size of the patch, but the type of connection the patch had to other patches did not affect the leaving probability. Due to efficient movement abilities of the flying squirrel and forest-dominated landscape structure of southern Finland, we suggest that conservation acts for maintaining viable populations of flying squirrels should focus on the quality of managed forest and the area of suitable breeding habitat (i.e. on habitat loss), but not necessarily on ecological corridors.  相似文献   

18.
Clonal spread is favoured in many plants at the expense of seed production in order to expand rapidly into open habitats or to occupy space by forming dense patches. However, for the dynamics of a population in a patchy landscape seed dispersal remains important even for clonal plants. We used a spatially explicit individual-based metapopulation model to examine the consequences of two trade-offs in Hieracium pilosella L: first, between vegetative and sexual reproduction, and second, between short and far-distance dispersal of seeds. Our main question was, what are the environmental conditions that cause a mixed strategy of vegetative and sexual reproduction to be optimal. The model was parameterised with field data on local population dynamics of H. pilosella. Patch dynamics were given firstly by disturbance events that opened patches in a matrix of a clonal grass that were colonisable for H. pilosella, and secondly by the gradual disappearance of H. pilosella patches due to the expanding grass. Simulations revealed opposing selection pressures on traits determined by the two trade-offs. Vegetative reproduction is favoured by local dynamics, i.e. the need for maintenance and expansion of established populations, whereas seed production is favoured by the necessity to colonise empty habitats. Similar pressures act on the proportion of seeds dispersed over short and far distances. Optimum reproductive and dispersal strategies depended on habitat quality (determined by seedling establishment probability), the fraction of dispersed seeds, and the fraction of seeds lost on unsuitable ground. Under habitat conditions supporting moderate to low seedling establishment, between 20% and 40% of reproductive effort in H. pilosella should be devoted to sexual reproduction with at least 10% of the seeds dispersed over distances suitable to attain empty patches. We conclude that in a spatially heterogeneous landscape sexual seed production in a clonal plant is advantageous even at the expense of local vegetative growth.  相似文献   

19.
Leafy spurge (Euphorbia esula (s.1.)) is an herbaceous perennial and serious weed of Eurasian origin that has been accidentally introduced into North America. The two European root-boring mothsChamaesphecia hungarica andCh. astatiformis are univoltine and overwinter as mature larvae. Both species have a lower survival rate on leafy spurge than on their field hosts, and thus are not optimal candidates for the biological control of leafy spurge. However, the rate of larval development and larval growth on the target weed and on the two field hosts is nearly the same. The experimental host range of both species is restricted to a few species in the subgenusEsula within the genusEuphorbia. The two species occupy different habitats in the steppe biome and are targeted for similar leafy spurge habitats in North America.  相似文献   

20.

Background

The total amount of native vegetation is an important property of fragmented landscapes and is known to exert a strong influence on population and metapopulation dynamics. As the relationship between habitat loss and local patch and gap characteristics is strongly non-linear, theoretical models predict that immigration rates should decrease dramatically at low levels of remaining native vegetation cover, leading to patch-area effects and the existence of species extinction thresholds across fragmented landscapes with different proportions of remaining native vegetation. Although empirical patterns of species distribution and richness give support to these models, direct measurements of immigration rates across fragmented landscapes are still lacking.

Methodology/Principal Findings

Using the Brazilian Atlantic forest marsupial Gray Slender Mouse Opossum (Marmosops incanus) as a model species and estimating demographic parameters of populations in patches situated in three landscapes differing in the total amount of remaining forest, we tested the hypotheses that patch-area effects on population density are apparent only at intermediate levels of forest cover, and that immigration rates into forest patches are defined primarily by landscape context surrounding patches. As expected, we observed a positive patch-area effect on M. incanus density only within the landscape with intermediate forest cover. Density was independent of patch size in the most forested landscape and the species was absent from the most deforested landscape. Specifically, the mean estimated numbers of immigrants into small patches were lower in the landscape with intermediate forest cover compared to the most forested landscape.

Conclusions/Significance

Our results reveal the crucial importance of the total amount of remaining native vegetation for species persistence in fragmented landscapes, and specifically as to the role of variable immigration rates in providing the underlying mechanism that drives both patch-area effects and species extinction thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号