首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Proteins are selectively packaged into vesicles at specific sites and then delivered correctly to the various organelles where they function, which is critical to the proper physiology of each organelle. The precursor form of the vacuolar hydrolase aminopeptidase I is a selective cargo molecule of the cytoplasm to vacuole targeting (Cvt) pathway and autophagy. Precursor Ape1 along with its receptor Atg19 forms the Cvt complex, which is transported to the pre-autophagosomal structure (PAS), the putative site of Cvt vesicle formation, in a process dependent on Atg11. Here, we show that this interaction occurs through the Atg11 C terminus; subsequent recruitment of the Cvt complex to the PAS depends on central regions within Atg11. Atg11 was shown to physically link several proteins, although the timing of these interactions and their importance are unknown. Our mapping shows that the Atg11 coiled-coil domains are involved in self-assembly and the interaction with other proteins, including two previously unidentified partners, Atg17 and Atg20. Atg11 mutants defective in the transport of the Cvt complex to the PAS affect the localization of other Atg components, supporting the idea that the cargo facilitates the organization of the PAS in selective autophagy. These findings suggest that Atg11 plays an integral role in connecting cargo molecules with components of the vesicle-forming machinery.  相似文献   

2.
Macroautophagy is a catabolic process by which cytosolic components are sequestered by double membrane vesicles called autophagosomes and sorted to the lysosomes/vacuoles to be degraded. Saccharomyces cerevisiae has adapted this mechanism for constitutive transport of the specific vacuolar hydrolases aminopeptidase I (Ape1) and α-mannosidase (Ams1); this process is called the cytoplasm to vacuole targeting (Cvt) pathway. The precursor form of Ape1 self-assembles into an aggregate-like structure in the cytosol that is then recognized by Atg19 in a propeptide-dependent manner. The interaction between Atg19 and autophagosome-forming machineries allows selective packaging of the Ape1-Atg19 complex by the autophagosome-like Cvt vesicle. Ams1 also forms oligomers and utilizes the Ape1 transport system by interacting with Atg19. Although the mechanism of selective transport of the Cvt cargoes has been well studied, it is unclear whether proteins other than Ape1 and Ams1 are transported via the Cvt pathway. We describe here that aspartyl aminopeptidase (Yhr113w/Ape4) is the third Cvt cargo, which is similar in primary structure and subunit organization to Ape1. Ape4 has no propeptide, and it does not self-assemble into aggregates. However, it binds to Atg19 in a site distinct from the Ape1- and Ams1-binding sites, allowing it to "piggyback" on the Ape1 transport system. In growing conditions, a small portion of Ape4 localizes in the vacuole, but its vacuolar transport is accelerated by nutrient starvation, and it stably resides in the vacuole lumen. We propose that the cytosolic Ape4 is redistributed to the vacuole when yeast cells need more active vacuolar degradation.  相似文献   

3.
The cytoplasm to vacuole (Cvt) trafficking pathway in S. cerevisiae is a constitutive biosynthetic pathway required for the transport of two vacuolar enzymes, aminopeptidase I (Ape1p) and alpha-mannosidase (Ams1p), to the vacuole. Ape1p and Ams1p bind to their receptor, Atg19p, in the cytosol to form a Cvt complex, which then associates with a membrane structure that envelops the complex before fusing with the vacuolar membrane. Ubiquitin-like modifications are required for both Cvt and macroautophagy, but no role for ubiquitin itself has been described. Here, we show that the deubiquitinating enzyme Ubp3p interacts with Atg19p. Moreover, Atg19p is ubiquitinated in vivo, and Atg19p-ubiquitin conjugates accumulate in cells lacking either Ubp3p or its cofactor, Bre5p. Deletion of UBP3 also leads to decreased targeting of Ape1p to the vacuole. Atg19p is ubiquitinated on two lysine residues, Lys(213) and Lys(216), which, when mutated, reduce the interaction of Atg19p with Ape1p. These results suggest that both ubiquitination and deubiquitination of Atg19p are required for its full function.  相似文献   

4.
《Autophagy》2013,9(5):724-726
Most autophagy-related (Atg) proteins are assembled at the phagophore assembly site or pre-autophagosomal structure (PAS), which is a potential site for vesicle formation during vegetative or starvation conditions. To understand the initial step of vesicle formation, it is important to know how Atg proteins are recruited to the PAS. Atg11 facilitates PAS assembly for the cytoplasm to vacuole targeting (Cvt) pathway in vegetative conditions. To examine autophagy-specific PAS formation, an ATG11 deletion mutant was used to eliminate the PAS formation that occurs in vegetative conditions. We found that Atg1, Atg13 and Atg17 play a similar role for PAS formation under autophagy-inducing conditions as seen for Atg11 during vegetative growth. In particular, Atg1 is proposed to have dual roles for autophagy-specific PAS recruitment. Atg1 plays a structural role for efficient recruitment of Atg proteins to the PAS, which is mediated by interaction with Atg13 and Atg17. In contrast, Atg1 kinase activity is needed for dissociation of Atg proteins from the PAS during autophagy inducing conditions, a function which is also critical for autophagy activity.

Addendum to: Cheong H, Nair U, Geng J Klionsky DK. The Atg1 kinase complex Is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:668-81.  相似文献   

5.
Autophagy is a process whereby cytoplasmic proteins and organelles are sequestered for bulk degradation in the vacuole/lysosome. At present, 16 ATG genes have been found that are essential for autophagosome formation in the yeast Saccharomyces cerevisiae. Most of these genes are also involved in the cytoplasm to vacuole transport pathway, which shares machinery with autophagy. Most Atg proteins are colocalized at the pre-autophagosomal structure (PAS), from which the autophagosome is thought to originate, but the precise mechanism of autophagy remains poorly understood. During a genetic screen aimed to obtain novel gene(s) required for autophagy, we identified a novel ORF, ATG29/YPL166w. atg29Delta cells were sensitive to starvation and induction of autophagy was severely retarded. However, the Cvt pathway operated normally. Therefore, ATG29 is an ATG gene specifically required for autophagy. Additionally, an Atg29-GFP fusion protein was observed to localize to the PAS. From these results, we propose that Atg29 functions in autophagosome formation at the PAS in collaboration with other Atg proteins.  相似文献   

6.
The proper functioning of eukaryotic organelles is largely dependent on the specific packaging of cargo proteins within transient delivery vesicles. The cytoplasm to vacuole targeting (Cvt) pathway is an autophagy-related trafficking pathway whose cargo proteins, aminopeptidase I and alpha-mannosidase, are selectively transported from the cytoplasm to the lysosome-like vacuole in yeast. This study elucidates a molecular mechanism for cargo specificity in this pathway involving four discrete steps. The Cvt19 receptor plays a central role in this process: distinct domains in Cvt19 recognize oligomerized cargo proteins and link them to the vesicle formation machinery via interaction with Cvt9 and Aut7. Because autophagy is the primary mechanism for organellar turnover, these results offer insights into physiological processes that are critical in cellular homeostasis, including specific packaging of damaged or superfluous organelles for lysosomal delivery and breakdown.  相似文献   

7.
ATG genes encode proteins that are required for macroautophagy, the Cvt pathway and/or pexophagy. Using the published Atg protein sequences, we have screened protein and DNA databases to identify putative functional homologs (orthologs) in 21 fungal species (yeast and filamentous fungi) of which the genome sequences were available. For comparison with Atg proteins in higher eukaryotes, also an analysis of Arabidopsis thaliana and Homo sapiens databases was included. This analysis demonstrated that Atg proteins required for non-selective macroautophagy are conserved from yeast to man, stressing the importance of this process in cell survival and viability. The A. thaliana and human genomes encode multiple proteins highly similar to specific fungal Atg proteins (paralogs), possibly representing cell type-specific isoforms. The Atg proteins specifically involved in the Cvt pathway and/or pexophagy showed poor conservation, and were generally not present in A. thaliana and man. Furthermore, Atg19, the receptor of Cvt cargo, was only detected in Saccharomyces cerevisiae. Nevertheless, Atg11, a protein that links receptor-bound cargo (peroxisomes, the Cvt complex) to the autophagic machinery was identified in all yeast species and filamentous fungi under study. This suggests that in fungi an organism-specific form of selective autophagy may occur, for which specialized Atg proteins have evolved.  相似文献   

8.
Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm‐to‐vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi‐scale analysis approach to study the molecular structure of Cvt vesicles. We report the oligomeric nature of the major Cvt cargo Ape1 with a combined 2.8 Å X‐ray and negative stain EM structure, as well as the secondary cargo Ams1 with a 6.3 Å cryo‐EM structure. We show that the major dodecameric cargo prApe1 exhibits a tendency to form higher‐order chain structures that are broken upon interaction with the receptor Atg19 in vitro. The stoichiometry of these cargo–receptor complexes is key to maintaining the size of the Cvt aggregate in vivo. Using correlative light and electron microscopy, we further visualize key stages of Cvt vesicle biogenesis. Our findings suggest that Atg19 interaction limits Ape1 aggregate size while serving as a vehicle for vacuolar delivery of tetrameric Ams1.  相似文献   

9.
Cheong H  Klionsky DJ 《Autophagy》2008,4(5):724-726
Most autophagy-related (Atg) proteins are assembled at the phagophore assembly site or pre-autophagosomal structure (PAS), which is a potential site for vesicle formation during vegetative or starvation conditions. To understand the initial step of vesicle formation, it is important to know how Atg proteins are recruited to the PAS. Atg11 facilitates PAS assembly for the cytoplasm to vacuole targeting (Cvt) pathway in vegetative conditions. To examine autophagy-specific PAS formation, an ATG11 deletion mutant was used to eliminate the PAS formation that occurs in vegetative conditions. We found that Atg1, Atg13 and Atg17 play a similar role for PAS formation under autophagy-inducing conditions as seen for Atg11 during vegetative growth. In particular, Atg1 is proposed to have dual roles for autophagy-specific PAS recruitment. Atg1 plays a structural role for efficient recruitment of Atg proteins to the PAS, which is mediated by interaction with Atg13 and Atg17. In contrast, Atg1 kinase activity is needed for dissociation of Atg proteins from the PAS during autophagy inducing conditions, a function which is also critical for autophagy activity.  相似文献   

10.
Yen WL  Klionsky DJ 《Autophagy》2007,3(3):254-256
Autophagy is a degradative pathway conserved among all eukaryotic cells, and is responsible for the turnover of damaged organelles and long-lived proteins. The primary morphological feature of autophagy is the sequestration of cargo within a double-membrane cytosolic vesicle called an autophagosome. More than 25 AuTophaGy-related (ATG) genes that are essential for autophagy have been identified from the yeast Saccharomyces cerevisiae. Despite the identification and characterization of Atg proteins, it remains a mystery how the double-membrane vesicle is made, what the membrane source(s) are, and how the lipid is transported to the forming vesicle. Among Atg proteins, Atg9 was the only characterized transmembrane protein required for the formation of double-membrane vesicles. Evidence has been obtained in yeast and mammalian cells for Atg9 cycling between different peripheral compartments and the phagophore assembly site/preautophagosomal structure (PAS), the proposed site of organization for autophagosome formation. This cycling feature makes Atg9 a potential membrane carrier to deliver lipids that are used in the vesicle formation process. Recently, in our lab we characterized a second transmembrane protein, Atg27. The unique localization and cycling features of Atg27 suggest the involvement of the Golgi complex in the autophagy pathway. In this addendum, we discuss the trafficking of Atg27 in yeast and compare it with that of Atg9, and consider the possible meaning of Atg27 Golgi localization.  相似文献   

11.
In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy.  相似文献   

12.
Geng J  Klionsky DJ 《Autophagy》2008,4(7):955-957
In eukaryotic cells, autophagy is a degradative pathway necessary for the turnover of bulk cytoplasm. In yeast, this pathway also mediates the specific transport of a vacuolar hydrolase zymogen, precursor aminopeptidase (prApe1), from the cytoplasm to the vacuole. Autophagy is under precise regulation, not only qualitatively but also quantitatively, especially in the steps involved in the vesicle formation process. We have recently used a fluorescence microscopy-based method to study the stoichiometry of autophagy-related (Atg) proteins during different conditions. This analysis shows that increased expression of Atg11 in the cytoplasm to vacuole targeting (Cvt) pathway increases the amount of this protein localized at the phagophore assembly site (PAS). In turn, under nutrient-rich conditions, the increased level of Atg11 causes the recruitment of higher than normal levels of Atg8 and Atg9 to the PAS, resulting in the formation of more Cvt vesicles, whereas the vesicle size is not affected. Combined with results from previous studies in starvation conditions, in this addendum we discuss the possible role of Atg8 and Atg9 in quantitatively regulating the vesicle formation process.  相似文献   

13.
Autophagy in yeast: a review of the molecular machinery   总被引:13,自引:0,他引:13  
Autophagy is a membrane trafficking mechanism that delivers cytoplasmic cargo to the vacuole/lysosome for degradation and recycling. In addition to non-specific bulk cytosol, selective cargoes, such as peroxisomes, are sorted for autophagic transport under specific physiological conditions. In a nutrient-rich growth environment, many of the autophagic components are recruited for executing a biosynthetic trafficking process, the cytoplasm to vacuole targeting (Cvt) pathway, that transports the resident hydrolases aminopeptidase I and alpha-mannosidase to the vacuole in Saccharomyces cerevisiae. Recent studies have identified pathway-specific components that are necessary to divert a protein kinase and a lipid kinase complex to regulate the conversion between the Cvt pathway and autophagy. Downstream of these proteins, the general machinery for transport vesicle formation involves two novel conjugation systems and a putative membrane protein complex. Completed vesicles are targeted to, and fuse with, the vacuole under the control of machinery shared with other vacuolar trafficking pathways. Inside the vacuole, a potential lipase and several proteases are responsible for the final steps of vesicle breakdown, precursor enzyme processing and substrate turnover. In this review, we discuss the most recent developments in yeast autophagy and point out the challenges we face in the future.  相似文献   

14.
Delivery of proteins and organelles to the vacuole by autophagy and the cytoplasm to vacuole targeting (Cvt) pathway involves novel rearrangements of membrane resulting in the formation of vesicles that fuse with the vacuole. The mechanism of vesicle formation and the origin of the membrane are complex issues still to be resolved. Atg18 and Atg21 are proteins essential to vesicle formation and together with Ygr223c form a novel family of phosphoinositide binding proteins that are associated with the vacuole and perivacuolar structures. Their localization requires the activity of Vps34, suggesting that phosphatidylinositol(3)phosphate may be essential for their function. The activity of Atg18 is vital for all forms of autophagy, whereas Atg21 is required for the Cvt pathway but not for nitrogen starvation-induced autophagy. The loss of Atg21 results in the absence of Atg8 from the pre-autophagosomal structure (PAS), which may be ascribed to a reduced rate of conjugation of Atg8 to phosphatidylethanolamine. A similar defect in localization of a second ubiquitin-like conjugate, Atg12-Atg5, suggests that Atg21 may be involved in the recruitment of membrane to the PAS.  相似文献   

15.
Autophagy is a catabolic membrane-trafficking mechanism conserved in all eukaryotic cells. In addition to the nonselective transport of bulk cytosol, autophagy is responsible for efficient delivery of the vacuolar enzyme Ape1 precursor (prApe1) in the budding yeast Saccharomyces cerevisiae, suggesting the presence of a prApe1 sorting machinery. Sequential interactions between Atg19-Atg11 and Atg19-Atg8 pairs are thought responsible for targeting prApe1 to the vesicle formation site, the preautophagosomal structure (PAS), and loading it into transport vesicles, respectively. However, the different patterns of prApe1 transport defect seen in the atg11Delta and atg19Delta strains seem to be incompatible with this model. Here we report that prApe1 could not be targeted to the PAS and failed to be delivered into the vacuole in atg8Delta atg11Delta double knockout cells regardless of the nutrient conditions. We postulate that Atg19 mediates a dual interaction prApe1-sorting mechanism through independent, instead of sequential, interactions with Atg11 and Atg8. In addition, to efficiently deliver prApe1 to the vacuole, a proper interaction between Atg11 and Atg9 is indispensable. We speculate that Atg11 may elicit a cargo-loading signal and induce Atg9 shuttling to a specific PAS site, where Atg9 relays the signal and recruits other Atg proteins to induce vesicle formation.  相似文献   

16.
The Cvt pathway is a biosynthetic transport route for a distinct subset of resident yeast vacuolar hydrolases, whereas macroautophagy is a nonspecific degradative mechanism that allows cell survival during starvation. Yet, these two vacuolar trafficking pathways share a number of identical molecular components and are morphologically very similar. For example, one of the hallmarks of both pathways is the formation of double-membrane cytosolic vesicles that sequester cargo before vacuolar delivery. The origin of the vesicle membrane has been controversial and various lines of evidence have implicated essentially all compartments of the endomembrane system. Despite the analogies between the Cvt pathway and autophagy, earlier work has suggested that the origin of the engulfing vesicle membranes is different; the endoplasmic reticulum is proposed to be required only for autophagy. In contrast, in this study we demonstrate that the endoplasmic reticulum and/or Golgi complex, but not endosomal compartments, play an important role for both yeast transport routes. Along these lines, we demonstrate that Berkeley bodies, a structure generated from the Golgi complex in sec7 cells, are immunolabeled with Atg8, a structural component of autophagosomes. Finally, we also show that none of the yeast t-SNAREs are located at the preautophagosomal structure, the presumed site of double-membrane vesicle formation. Based on our results, we propose two models for Cvt vesicle biogenesis.  相似文献   

17.
Misfolded protein aggregation causes disease and aging; autophagy counteracts this by eliminating damaged components, enabling cells to survive starvation. The cytoplasm-to-vacuole targeting pathway in yeast encompasses the aggregation of the premature form of aminopeptidase 1 (prApe1) in cytosol and its sequestration by autophagic proteins into a vesicle for vacuolar transport. We show that the propeptide of Ape1 is important for aggregation and vesicle formation and that it is sufficient for binding to prApe1 and Atg19. Defective aggregation disrupts vacuolar transport, suggesting that aggregate shape is important in vesicle formation, whereas Atg19 binding is not sufficient for vacuolar transport. Aggregation involves hydrophobicity, whereas Atg19 binding requires additional electrostatic interactions. Ape1 dodecamerization may cluster propeptides into trimeric structures, with sufficient affinity to form propeptide hexamers by binding to other dodecamers, causing aggregation. We show that Ape1 aggregates bind Atg19 and Atg8 in vitro; this could be used as a scaffold for an in vitro assay of autophagosome formation to elucidate the mechanisms of autophagy.  相似文献   

18.
Cells must regulate both biosynthesis and degradation to ensure proper homeostasis of cellular organelles and proteins. This balance is demonstrated in a unique way in the yeast Saccharomyces cerevisiae, which possesses two distinct, yet mechanistically related trafficking routes mediating the delivery of proteins from the cytoplasm to the vacuole: the biosynthetic cytoplasm to vacuole targeting (Cvt) and the degradative autophagy pathways. Several components employed by these two transport routes have been identified, but their mechanistic interactions remain largely unknown. Here we report a novel gene involved in these pathways, which we have named ATG23. Atg23 localizes to the pre-auto-phagosomal structure but also to other cytosolic punctate compartments. Our characterization of the Atg23 protein indicates that it is required for the Cvt pathway and efficient autophagy but not pexophagy. In the absence of Atg23, cargo molecules such as prApe1 are correctly recruited to a pre-autophagosomal structure that is unable to give rise to Cvt vesicles. We also demonstrate that Atg23 is a peripheral membrane protein that requires the presence of Atg9/Apg9 to be specifically targeted to lipid bilayers. Atg9 transiently interacts with Atg23 suggesting that it participates in the recruitment of this protein.  相似文献   

19.
Autophagy is a highly regulated trafficking pathway that leads to selective degradation of cellular constituents such as protein aggregates and excessive and damaged organelles. Atg1 is an essential part of the core autophagic machinery, which triggers induction of autophagy and the Cvt pathway. Although changes in Atg1 phosphorylation and complex formation are thought to regulate its function, the mechanism of Atg1 kinase activation remains unclear. Using a quantitative mass spectrometry approach, we identified 29 phosphorylation sites, of which five are either upregulated or downregulated by rapamycin treatment. Two phosphorylation sites, threonine 226 and serine 230, are evolutionarily conserved and located in the activation loop of the amino terminal kinase domain of Atg1. These phosphorylation events are not required for Atg1 localization to the phagosome assembly site (PAS), or the proper assembly of the multisubunit Atg1 kinase complex and binding to its activator Atg13. However, mutation of either one of these sites results in a loss of Atg1 kinase activity and its function in autophagy and the Cvt pathway. Taken together, our data suggest that phosphorylation of Atg1 on multiple sites provides critical mechanisms to regulate Atg1 function in autophagy and the Cvt pathway.  相似文献   

20.
Autophagy induced by nutrient depletion is involved in survival during starvation conditions. In addition to starvation-induced autophagy, the yeast Saccharomyces cerevisiae also has a constitutive autophagy-like system, the Cvt pathway. Among 31 autophagy-related (Atg) proteins, the function of Atg17, Atg29, and Atg31 is required specifically for autophagy. In this study, we investigated the role of autophagy-specific (i.e., non-Cvt) proteins under autophagy-inducing conditions. For this purpose, we used atg11Delta cells in which the Cvt pathway is abrogated. The autophagy-unique proteins are required for the localization of Atg proteins to the pre-autophagosomal structure (PAS), the putative site for autophagosome formation, under starvation condition. It is likely that these Atg proteins function as a ternary complex, because Atg29 and Atg31 bind to Atg17. The Atg1 kinase complex (Atg1-Atg13) is also essential for recruitment of Atg proteins to the PAS. The assembly of Atg proteins to the PAS is observed only under autophagy-inducing conditions, indicating that this structure is specifically involved in autophagosome formation. Our results suggest that Atg1 complex and the autophagy-unique Atg proteins cooperatively organize the PAS in response to starvation signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号