首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The modulatory activity of a series of 20 simple xanthones on isoforms alpha, betaI, delta, eta and zeta of protein kinase C (PKC) was evaluated using an in vivo yeast phenotypic assay. Hydroxy and/or methoxyxanthones were synthesised. The majority of these compounds caused an effect compatible with activation of PKC and some showed to be more effective than the standard PKC activator (PMA or arachidonic acid). The xanthones tested differ in their efficacy and potency towards individual PKC isoforms and some showed higher selectivities for PKC-delta, -eta or -zeta, suggesting that xanthone derivatives can become valuable research tools to elucidate the physiological roles of these isoforms.  相似文献   

2.
A series of xanthones and xanthonoxypropanolamines have been synthesized. The activity of compounds on cardiovascular system was evaluated. All the compounds tested exhibited effective hypotensive activity in anesthetized rats. An oxypropanolamine side chain substituted at the C-3 position of the xanthone nucleus significantly enhanced the hypotensive activity. In rat thoracic aorta, all the compounds tested significantly depressed the contractions induced by Ca(2+) (1.9mM) in high K+(80mM) medium and the phasic and tonic contractions caused by norepinephrine (3 microM). In the rat thoracic aorta, the phenylephrine- and high K+ -induced 45Ca(2+) influx were both inhibited by a selective xanthone derivative, 13. In addition to the previously reported result of 13, evaluated as beta adrenoceptor blocker, the depressor and bradycardia effects of 9 are independent of the parasympathetic passway. These results suggest that 13 showed inhibitory effects on the contractile response caused by high K+ and norepinephrine in rat thoracic aorta are mainly due to inhibition of Ca(2+) influx through both voltage-dependent and receptor-operated Ca(2+) channels. The vasodilating properties of 13 is due to its calcium channel and beta adrenergic blocking effects.  相似文献   

3.
Inhibition of protein kinase C by annexin V.   总被引:11,自引:0,他引:11  
Annexin V is a protein of unknown biological function that undergoes Ca(2+)-dependent binding to phospholipids located on the cytosolic face of the plasma membrane. Preliminary results presented herein suggest that a biological function of annexin V is the inhibition of protein kinase C (PKC). In vitro assays showed that annexin V was a specific high-affinity inhibitor of PKC-mediated phosphorylation of annexin I and myosin light chain kinase substrates, with half-maximal inhibition occurring at approximately 0.4 microM. Annexin V did not inhibit epidermal growth factor receptor/kinase phosphorylation of annexin I or cAMP-dependent protein kinase phosphorylation of the Kemptide peptide substrate. Since annexin V purified from both human placenta and recombinant bacteria inhibited protein kinase C activity, it is not likely that the inhibitor activity was associated with a minor contaminant of the preparations. The following results indicated that the mechanism of inhibition did not involve annexin V sequestration of phospholipid that was required for protein kinase C activation: similar inhibition curves were observed as phospholipid concentration was varied from 0 to 800 micrograms/mL; the extent of inhibition was not significantly affected by the order of addition of phospholipid, substrate, or PKC, and the core domain of annexin I was not a high-affinity inhibitor of PKC even though it had similar Ca2+ and phospholipid binding properties as annexin V. These data indirectly indicate that inhibition occurred by direct interaction between annexin V and PKC. Since the concentration of annexin V in many cell types exceeds the amounts required to achieve PKC inhibition in vitro, it is possible that annexin V inhibits PKC in a biologically significant manner in intact cells.  相似文献   

4.
A retro-inverso analogue of the pseudosubstrate sequence, Arg-Phe-Ala-Arg-Lys-Gly-Ala25-Leu-Arg-Gln-Lys-Asn-Val (1), found in the regulatory domain of all protein kinase C (PKC) subspecies was synthesized. It shows to be an inhibitor (IC50 = 31 microM) of the phosphorylation, by PKC, of [Ala9.10,Lys11.12] glycogen synthase (1-12). Its analogue in which D Ala25 is replaced by D Ser is not a PKC substrate, but a more potent inhibitor, competitive with the peptidic substrate (IC50 = 5 microM, Ki = 2 microM). Both retro-inverso peptides are highly specific for PKC versus adenosine cAMP-dependent protein kinase (PKA) and are totally stable towards proteolysis by trypsin or pronase.  相似文献   

5.
Inhibition of protein kinase C by cationic amphiphiles.   总被引:6,自引:0,他引:6  
R Bottega  R M Epand 《Biochemistry》1992,31(37):9025-9030
A large number of PKC inhibitors are positively charged. We evaluated the structural features of cationic amphiphiles which are necessary for inhibiting PKC. Many of these compounds were derivatives of cholesterol, which possesses a hydrophobic backbone which does not perturb hydrocarbon packing in membrane bilayers. In addition, they contain a tertiary or quaternary nitrogen functionality in the head group. All designed cholesterol-based amphiphiles inhibit PKC activity; the potency of the amphiphile correlates with the presence of positive charge. Quaternary ammonium amphiphiles are 10-fold more potent than their tertiary amine counterparts, generally inhibiting in the 10-60 microM range using the Triton mixed micelle assay. Aside from charge, factors such as the structure of the amine-containing head group, its length from the hydrocarbon moiety, or the number of amine groups on the amphiphile did not markedly influence inhibitor potency. In contrast, the hydrocarbon backbone did influence potency: cationic amphiphiles containing a steroid backbone were more potent inhibitors of PKC than their straight-chain analogues. Changing the nature of the hydrocarbon from a sterol to an alkyl group lowers the pK of the amine head group so that the straight-chain analogues are no longer cationic in the conditions in the PKC assay. The results of these studies suggest that a combination of positive charge and a bilayer-stabilizing structural characteristic provides a basis for the rational design of PKC inhibitors.  相似文献   

6.
Inhibition of protein kinase C by calphostin C is light-dependent.   总被引:23,自引:0,他引:23  
Calphostin C, a secondary metabolite of the fungus Cladosporium cladosporioides, inhibits protein kinase C by competing at the binding site for diacylglycerol and phorbol esters. Calphostin C is a polycyclic hydrocarbon with strong absorbance in the visible and ultraviolet ranges. In characterizing the activity of this compound, we unexpectedly found that the inhibition of [3H]phorbol dibutyrate binding was dependent on exposure to light. Ordinary fluorescent light was sufficient for full activation. The inhibition of protein kinase C activity in cell-free systems and intact cells also required light. Light-dependent cytotoxicity was seen at concentrations about 5-fold higher than those inhibiting protein kinase C.  相似文献   

7.
Retinol has little effect on the activity of protein kinase C. However, air oxidation of retinol produces products which are inhibitory to this enzyme. These results are consistent with a suggestion that the activity of protein kinase C is modulated by the bulk biophysical properties of its environment. The facile susceptibility of retinol to oxidation, as demonstrated by HPLC analysis, explains some of the discrepant reports of its effects on the activity of protein kinase C.  相似文献   

8.
9.
The effect of a matrix of concentrations of Ca2+ (0.01, 0.1, 0.5, 5 mM), Mg2+ (0.2, 0.5, 1, 2, 5, 10 mM), and Na+ (50, 100, 150 mM) on the phosphorylation of histone H-1 by protein kinase C was measured in the presence of 5 mol % diacylglycerol and Mg-ATP in both phosphatidylserine micelles and liposomes formed from a 1:4 mixture of phosphatidylserine and phosphatidylcholine. Monovalent cations (150 mM) reduced activity by 60 and 84% in the micelle and liposome assay systems, respectively. Inhibition was also observed with 5 mM Ca2+ and 10 mM Mg2+. The phosphorylating activity was compared with computer calculations of the negative electrostatic potentials (psi o) of the phospholipid membranes in the presence of the cations.  相似文献   

10.
Purified lipophosphoglycan from Leishmania donovani was found to inhibit the activity of protein kinase C isolated from rat brain. Protein kinase C inhibition by lipophosphoglycan was continuous for 30 minutes. The glycoconjugate was a competitive inhibitor with respect to diolein, a noncompetitive inhibitor with respect to phosphatidylserine, and had no significant effect on protein kinase M and protein kinase A. A possible physiological role of lipophosphoglycan as a negative effector of protein kinase C is suggested.  相似文献   

11.
N Isakov 《Cellular immunology》1988,115(2):288-298
Protein kinase C (PKC) is a ubiquitous enzyme linked to transmembrane signal transduction. It regulates agonist-mediated activation of intracellular events that result in growth and differentiation in a variety of cells and tissues. PKC is the cellular receptor for phorbol ester tumor promoters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), that bind to, and directly activate, this enzyme. Vitamin A analogs (retinoids) have been known to antagonize biologic effects of phorbol esters, e.g., promotion of skin tumor formation; however, the extract mechanism(s) of this action is not clear. To analyze the effects of retinoids on T-cell-derived PKC, we partially purified the enzyme from human leukemic T cells (Jurkat) and examined the effects of different vitamin A analogs on its activity. Furthermore, the regulatory effects of retinoids on PKC activity were compared with those of common membrane phospholipids. Retinal inhibited PKC activation induced by TPA, as well as by diacylglycerol, the physiologic activator of PKC. The observed inhibition resulted from competition with phospholipid (phosphatidylserine) and was selective for the phospholipid-dependent C kinase; cAMP-dependent protein kinase, which is phospholipid-independent, was not affected by retinal. The inhibitory effect of retinal on PKC activity was similar to that of phosphatidylcholine. Retinoic acid, in contrast to retinal, induced a Ca2+-dependent activation of PKC, thus substituting for phosphatidylserine. Furthermore, PKC activation by retinoic acid was similar to that by phosphatidylserine, the natural phospholipid cofactor, in that both could be inhibited by phosphatidylcholine and augmented by phosphatidylinositol. The inhibition or activation of PKC by retinal or retinoic acid, respectively, was independent of whether the terminal aldehyde (retinal) or carboxyl (retinoic acid) groups were in the trans or cis configuration. Other vitamin A analogs tested did not affect PKC activity. The results demonstrate that different retinoids and phospholipids may have positive or negative cooperativity in PKC activation, thereby regulating its enzymatic activity and affecting the resulting intracellular activation events. These findings suggest that at least part of the biologic effects of retinoids in general, and their modulation of T-cell function in particular, may be mediated via the influence of their intracellular metabolites on PKC, and that this mechanism may account for some of the antagonistic effects of retinoids on TPA-mediated responses in cells.  相似文献   

12.
Analogues of the synthetic substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly in which the serine is replaced by other amino acids inhibited the activity of the catalytic subunit of cyclic AMP-dependent protein kinase from beef skeletal muscle (Peak I). All of the analogues were competitive with respect to peptide substrate but apparent Ki values varied depending on the particular amino acid that was substituted for serine. Inhibition was also competitive with respect to mixed histone as determined in experiments utilizing one of the analogues. Acetylation of the terminal amino group of Leu-Arg-Arg-Ala-Ser-Leu-Gly lowered the Km for this substrate from 16 micrometer to 3 micrometer, but a similar modification of the inhibitory analogue Leu-Arg-Arg-Ala-Ala-Leu-Gly resulted in no major change in the Ki value. An amount of inhibitory peptide sufficient to inhibit the cyclic AMP-dependent protein kinase by 90% caused less than 10% inhibition of several cyclic AMP-independent protein kinases indicating a high degree of specificity of inhibition by the peptide analogues. The experiments show that synthetic peptide analogues could be useful in identifying phosphorylation reactions catalyzed by cyclic AMP-dependent protein kinase as distinguished from other protein kinase reactions.  相似文献   

13.
Several newly synthesized 4-hydroxycinnamamide derivatives such as 3-(3',5'-di-isopropyl-4'-hydroxybenzylidene)-2-oxindol (ST 280), 3-(3',5'-di-methylthiomethyl-4'-hydroxybenzylidene)-2-oxindole (ST 458), alpha-cyano-3-ethoxy-4-hydroxy-5-phenylthiomethylcinnamamide (ST 638) and 3-(3'-ethoxy-4'-hydroxy-5'-phenylthiomethylbenzylidene)-2-pyrol idinone (ST 642) were found to inhibit tyrosine-specific protein kinase activity of the epidermal growth factor (EGF) receptor with IC50 values of 0.44 microM, 0.44 microM, 0.37 microM and 0.85 microM, respectively. None of them showed inhibitory effect on the enzyme activities of serine- and/or threonine-specific protein kinases such as cAMP-dependent protein kinase, Ca2+/phospholipid-dependent protein kinase C, casein kinase I and casein kinase II. In addition, none of them had effect on Na+/K+-ATPase or 5'-nucleotidase. The results suggest that the compound ST 280, ST 458, ST 638 and ST 642 are potent and specific inhibitors of tyrosine-specific protein kinase.  相似文献   

14.
Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C   总被引:16,自引:0,他引:16  
The effect of alpha-tocopherol (vitamin E) on the proliferation of vascular smooth muscle cells (A7r5), human osteosarcoma cells (Saos-2), fibroblasts (Balb/3T3), and neuroblastoma cells (NB2A) has been studied. The proliferation of vascular smooth muscle cells was inhibited by physiologically relevant concentrations of alpha-tocopherol, neuroblastoma cells were only sensitive to higher alpha-tocopherol concentrations, and proliferation of the other cell lines was not inhibited. The inhibition of smooth muscle cell proliferation was specific for alpha-tocopherol. Trolox, phytol, and alpha-tocopherol esters had no effect. Proliferation of smooth muscle cells stimulated by platelet-derived growth factor or endothelin was completely sensitive to alpha-tocopherol. If smooth muscle cells were stimulated by fetal calf serum, proliferation was 50% inhibited by alpha-tocopherol. No effect of alpha-tocopherol was observed when proliferation of smooth muscle cells was stimulated by bombesin and lysophosphatidic acid. The possibility of an involvement of protein kinase C in the cell response to alpha-tocopherol was suggested by experiments with the isolated enzyme and supported by the 2- to 3-fold stimulation of phorbol ester binding induced by alpha-tocopherol in sensitive cells. Moreover, alpha-tocopherol also caused inhibition of protein kinase C translocation induced by phorbol esters and inhibition of the phosphorylation of its 80-kDa protein substrate in smooth muscle cells. A model is discussed by which alpha-tocopherol inhibits cell proliferation by interacting with the cytosolic protein kinase C, thus preventing its membrane translocation and activation.  相似文献   

15.
The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG.  相似文献   

16.
The effect of the protein kinase C enzyme inhibitor H-7 on the noncardiogenic lung edema induced by phorbol myristate acetate (PMA) in mice was examined. Lung edema was assessed by measurement of 125I-labeled albumin leak into the lung. The results showed that pretreatment of mice with H-7 nearly prevents the albumin leak induced by PMA, whereas post-PMA treatment with H-7 had less of an effect on the albumin leak, although it was still significant.  相似文献   

17.
Transient receptor potential canonical‐6 (TRPC6) ion channels, expressed at high levels in podocytes of the filtration barrier, are recently implicated in the pathogenesis of various forms of proteinuric kidney diseases. Indeed, inherited or acquired up‐regulation of TRPC6 activities are suggested to play a role in podocytopathies. Yet, we possess limited information about the regulation of TRPC6 in human podocytes. Therefore, in this study, we aimed at defining how the protein kinase C (PKC) system, one of the key intracellular signalling pathways, regulates TRPC6 function and expression. On human differentiated podocytes, we identified the molecular expressions of both TRPC6 and several PKC isoforms. We also showed that TRPC6 channels are functional since the TRPC6 activator 1‐oleoyl‐2‐acetyl‐sn‐glycerol (OAG) induced Ca2+‐influx to the cells. By assessing the regulatory roles of the PKCs, we found that inhibitors of the endogenous activities of classical and novel PKC isoforms markedly augmented TRPC6 activities. In contrast, activation of the PKC system by phorbol 12‐myristate 13‐acetate (PMA) exerted inhibitory actions on TRPC6 and suppressed its expression. Importantly, PMA treatment markedly down‐regulated the expression levels of PKCα, PKCβ, and PKCη reflecting their activation. Taken together, these results indicate that the PKC system exhibits a ‘tonic’ inhibition on TRPC6 activity in human podocytes suggesting that pathological conditions altering the expression and/or activation patterns of podocyte‐expressed PKCs may influence TRPC6 activity and hence podocyte functions. Therefore, it is proposed that targeted manipulation of certain PKC isoforms might be beneficial in certain proteinuric kidney diseases with altered TRPC6 functions.  相似文献   

18.
The enzyme adenosine kinase (AK) plays a central role in regulating the intracellular and interstitial concentration of the purine nucleoside adenosine (Ado). In view of the beneficial effects of Ado in protecting tissues from ischemia and other stresses, there is much interest in developing AK inhibitors, which can regulate Ado concentration in a site- and event-specific manner. The catalytic activity of AK from different sources is dependent upon the presence of activators such as phosphate (Pi). In this work we describe several new phosphorylated compounds which either activate or inhibit AK. The compounds acetyl phosphate, carbamoyl phosphate, dihydroxyacetone phosphate and imidodiphosphate were found to stimulate AK activity in a dose-dependent manner comparable to that seen with Pi. In contrast, a number of phosphonate and bisphosphonate derivatives, which included clodronate and etidronate, were found to inhibit the activity of purified AK in the presence of Pi. These AK inhibitors (viz. clodronate, etidronate, phosphonoacetic acid, 2-carboxyethylphosphonic acid, N-(phosphonomethyl)-glycine and N-(phosphonomethyl)iminodiacetic acid), at concentrations at which they inhibited AK, were also shown to inhibit the uptake of 3H-adenosine and its incorporation into macromolecules in cultured mammalian cells, indicating that they were also inhibiting AK in intact cells. The drug concentrations at which these effects were observed showed limited toxicity to the cultured cells, indicating that these effects are not caused by cellular toxicity. These results indicate that the enzyme AK provides an additional cellular target for the clinically widely used bisphosphonates and related compounds, which could possibly be exploited for a new therapeutic application. Our structure–activity studies on different AK activators and inhibitors also indicate that all of the AK activating compounds have a higher partial positive charge (δ+) on the central phosphorous atom in comparison to the inhibitors. This information should prove helpful in the design and synthesis of more potent inhibitors of AK.  相似文献   

19.
It is shown that 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), a specific inhibitor of protein kinase C, induces neuritogenesis in neuro 2a cells. The percentage of differentiated cells was 9%, 20%, 59% and 85% at 0, 17, 85 and 500 microM H7, respectively. The number of neurites cell increased 2-, 8- and 14-fold over the controls for 17, 85 and 500 microM H7, respectively. These results indicate that protein kinase C plays a key role in the control of differentiation of neural cells and that its specific inhibition may be of basic as well as of practical importance.  相似文献   

20.
Oleanolic acid (1) and five synthetic derivatives (2-6) were tested spectrophotometrically for inhibition of urease, beta-lactamase, acetyl cholinesterase and alpha-glucosidase. All products showed a positive response only against alpha-glucosidase but not against the other enzymes; IC(50) calculations showed that the dihydroxy-olide derivative (4) was the most potent among all tested samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号