首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
Plasma membrane vesicles were isolated from homogenised yeast cells by filtration, differential centrifugation and aggregation of the mitochondrial vesicles at pH 4. As judged by biochemical, cell electrophoretic and electron microscopic criteria a pure plasma membrane vesicle preparation was obtained.The surface charge density of the plasma membrane vesicles is similar to that of intact yeast cells with an isoelectric point below pH 3. The mitochondrial vesicles have a higher negative surface charge density in the alkaline pH range. Their isoelectric point is near pH 4.5, where aggregation is maximal.The yield of vesicles sealed to K+ was maximal at pH 4 and accounted for about one third of the total vesicle volume.The plasma membrane vesicles demonstrate osmotic behaviour, they shrink in NaCl solutions when loosing K+.As in intact yeast cells the entry and exit of sugars like glucose or galactose in plasma membrane vesicles is inhibited by UO22+.Counter transport in plasma membrane vesicles with glucose and mannose and iso-counter transport with glucose suggests that a mobile carrier for sugar transport exists in the plasma membrane.After galactose pathway induction in the yeast cells and subsequent preparation of plasma membrane vesicles the uptake of galactose into the vesicles increased by almost 100% over the control value without galactose induction. This increase is explained by the formation of a specific galactose carrier in the plasma membrane.  相似文献   

2.
1. When yeast oxidizes propan-2-ol in the presence of KCl no uptake of K+ occurs. 2. When propionate is added to suspensions containing propan-2-ol, or if the suspensions are bubbled with CO2, a considerable uptake of K+ occurs. 3. Maximum K+ uptake occurs at a propionate concentration of 2mm. 4. The addition of 20mm-propionate to the suspension lowers the intracellular pH of the yeast from a resting value in the region of 6.2 to approx. 5.6. 5. When K+ uptake is measured in the presence of 20mm-propionate, progressive changes in the rate of K+ uptake and intracellular pH occur. The optimum rate of K+ uptake occurs at an intracellular pH of 5.70. 6. The effect of both intra- and extra-cellular pH on K+–K+ exchange was studied and an optimum rate was found at an extracellular pH of 5.35, the corresponding intracellular pH being 6.44. 7. When a Na+-loaded yeast oxidizes propan-2-ol in the presence of KCl, a steady efflux of Na+ and influx of K+ occurs. The addition of 10mm-propionate to the suspension markedly inhibited the Na+ efflux but only slightly decreased the K+ influx. 8. The effect of both extra- and intra-cellular pH on Na+ efflux was studied with propan-2-ol and with glucose. The results can be best interpreted in terms of intracellular pH changes, and an optimum was obtained at approx. pH6.40.  相似文献   

3.
The effects of growth phase and DNA repair capacity on the production and rejoining of ethyl methanesulfonate (EMS)-induced single-strand breaks were studied in 4 strains of E. coli. DNAs from logarithmic and stationary phase cells of the DNA polymerase I deficient mutant, P3478 polA, a recombination deficient mutant, DZ417recA, and from the respective parental strains, W3110pol+ and AB253rec+ were examined by sedimentation in alkaline sucrose gradients.In both parental strains, stationary phase cells exhibited enhanced strand rejoining. In the mutants, alkylated DNA was repaired to some extent in both growth phases, but it contained a greater proportion of small DNA fragments compared to the parental strains. Some DNA breakdown occured in all four strains but this was most extensive in stationary phase cells of the repair-deficient mutants.These results indicate that the four strains can rejoin EMS-induced DNA strand breaks with varying efficiency depending on the physiological state and the genetic capacity for repair.  相似文献   

4.
We previously demonstrated inhibition of Na+-dependent 32Pi transport in canine renal brush-border membranes in association with NAD+-induced ADP ribosylation of membrane protein(s) and postulated that NAD+ inhibits Pi transport across the brush-border membrane via ADP ribosylation. Recently it was shown that incubation of rat brush-border membrane with NAD+ resulted in release of Pi which was prevented by EDTA. It was proposed that NAD+-mediated inhibition of 32Pi transport might occur through this mechanism. To determine whether NAD+ inhibited 32Pi transport by a mechanism other than or in addition to release of Pi, we compared Na+-dependent 32Pi counterflow in brush-border membrane equilibrated with Pi or with Pi generated from NAD+. Release of Pi from NAD+ incubated with brush-border membrane was confirmed. The increased uptake of 32Pi which was demonstrated in brush-border membrane equilibrated with Pi was not measured when intravesicular Pi was generated from a concentration of NAD+ which effected ADP-ribosylation of brush border membranes (100 μM NAD+). In contrast, increased uptake of 32Pi was demonstrated when intravesicular Pi was generated from 1 μM NAD+ which did not effect ADP ribosylation. Mg2+-dependent ADP ribosylation of brush-border membrane incubated with NAD+ was demonstrated which persisted during the time interval of 32Pi uptake measurements. Our findings are compatible with the hypothesis that NAD+-induced ADP ribosylation of brush-border membrane protein(s) results in inhibition of Pi transport across the membrane in vivo. EDTA may act to prevent this inhibition in brush-border membrane by chelation of Mg2+ and decreased ADP ribosylation.  相似文献   

5.
The K+ uptake pathways in yeast mitochondria are still undefined. Nonetheless, the K+-mediated mitochondrial swelling observed in the absence of phosphate (PO4) and in the presence of a respiratory substrate has led to propose that large K+ movements occur in yeast mitochondria. Thus, the uptake of K+ by isolated yeast mitochondria was evaluated. Two parallel experiments were conducted to evaluate K+ transport; these were mitochondrial swelling and the uptake of the radioactive K+ analog 86Rb+. The opening of the yeast mitochondrial unspecific channel (YMUC) was regulated by different PO4 concentrations. The high protein concentrations used to measure 86Rb+ uptake resulted in a slight stabilization of the transmembrane potential at 0.4 mM PO4 but not at 0 or 4 mM PO4. At 4 mM PO4 swelling was inhibited while, in contrast, 86Rb+ uptake was still observed. The results suggest that an energy-dependent K+ uptake mechanism was unmasked when the YMUC was closed. To further analyze the properties of this K+ uptake system, the Mg2+ and quinine sensitivity of both swelling and 86Rb+ uptake were evaluated. Under the conditions where the unspecific pore was closed, K+ transport sensitivity to Mg2+ and quinine increased. In addition, when Zn2+ was added as an antiport inhibitor, uptake of 86Rb+ increased. It is suggested that in yeast mitochondria, the K+ concentration is highly regulated by the equilibrium of uptake and exit of this cation through two specific transporters.  相似文献   

6.

Background

Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi.

Methods

32Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na+, H+ and K+ fluxes were also investigated. The transport capacities of different evolutive forms were compared.

Results

Epimastigotes grew significantly more slowly in 2 mM than in 50 mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na+. We found that the parasites express TcPho84, a H+:Pi-symporter, and TcPho89, a Na+:Pi-symporter. Both Pi influx mechanisms showed Michaelis–Menten kinetics, with a one-order of magnitude higher affinity for the Na+-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K+ ionophore) or SCH28028 (inhibitor of (H+ + K+)ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H+ gradient energizes uphill Pi entry and that K+ recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, decreased only the Na+-dependent Pi uptake, indicating that this Na+ pump generates the Na+ gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently.

Conclusions

Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na+ or H+/K+ fluxes.

General significance

This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.  相似文献   

7.
The appearance of cytochrome P-450 and of cytochrome oxidase aa3 were determined in the sophorose lipid producing yeast Candida (Torulopsis) apicola IMET 43 747 grown on a mixture of glucose and n-hexadecane. Cytochrome P-450, detectable in both the logarithmic and the stationary growth phase was not repressed by glucose. At the end of the logarithmic growth phase the content of cytochrome P-450 was three- to fivefold increased, which was connected with initiation of sophorose lipid biosynthesis. After that it dropped to the basal level, which remained constant during sophorose lipid biosynthesis. Cytochrome P-450 from logarithmic cells was cross-reactive with an antibody derived against cytochrome P-450alk from C. tropicalis. With microsomal proteins of stationary cells no cross-reactivity was obtained. The microsomal hydroxylase system of stationary cells seem to be regulated by the carbohydrate used as carbon source. Correspondence to: R. K. Hommel  相似文献   

8.
Silicic acid transport was studied in the photosynthetic diatom Navicula pelliculosa (Bréb.) Hilse using [68Ge] germanic acid (68Ge(OH)4) as a tracer of silicic acid (Si(OH)4). The initial uptake rate of Si(OH)4 was dependent on cell number, pH, temperature, light and was promoted by certain monovalent cations in the medium. Na+ was more effective than K+, whereas Li+ and NH+4 were ineffective at promoting uptake. Uncouplers and inhibitors of oxidative phosphorylation and of photophosphorylation reduced uptake by 40–99% of control values. Uptake was also especially sensitive to the sulfhydryl blocking agents at 10?5 M and to the ionophorous compound valinomycin (10?7 M) which inhibited uptake by 82%. The Si(OH)4 transport system displayed Michaelis-Menten-type saturation kinetics with kinetic parameters of KS= 4.4 p. mol Si(OH)4· 1?1, Vmax= 334 pmol Si(OH)4· 106 cells?1· min?1. Calculations of the acid soluble silicic acid pool size based on 60 s uptake at 20 μM Si(OH)4 suggested that intracellular levels of Si could reach 20 mM and as much as 5 mM could exist as free silicic acid, representing maintenance of a 250-fold concentration gradient compared with the medium. Efflux from preloaded cells was dependent on temperature and the Si(OH)4 concentration of the external medium. In the presence of 100 μMM “cold” Si(OH)4, approximately 30% of the Si(OH)4 in preloaded cells was exchanged in 20 min. The initial uptake rate of Si(OH)4 in logarithmic phase cells was constant, but the uptake rate increased in a linear fashion for 6 h in stationary phase cells. These results suggest that the first step in silica mineralization by diatoms is the active transmembrane transport of Si(OH)4 by an energy dependent, saturable, membrane-carrier mechanism which requires the monovalent cations Na+ and K+ and is sensitive to sulfhydryl blocking agents. Silicic acid transport activity also appears to be regulated during different growth stages of the diatom.  相似文献   

9.
The uptake of monovalent cations by yeast via the monovalent cation uptake mechanism is inhibited by phosphate. The inhibition of Rb+ uptake shows saturation kinetics and the phosphate concentration at which halfmaximal inhibition is observed is equal to the Km of phosphate for the sodiumindependent phosphate uptake mechanism. The kinetic coefficients of Rb+ and Tl+ uptake are affected by phosphate: the maximal rate of uptake is decreased and the apparent affinity constants for the translocation sites are increased.In the case of Na+ uptake, the inhibition by phosphate may be partly or completely compensated by stimulation of Na+ uptake via a sodium-phosphate cotransport mechanism.Phosphate effects a transient stimulation of the efflux of the lipophilic cation dibenzyldimenthylammonium from preloaded yeast cells and a transient inhibition of dibenzyldimethylammonium eptake. Possibly, the inhibition of monovalent cation uptake in yeast can be explained by a transient depolarization of the cell membrane by phosphate.  相似文献   

10.
Growth characteristics and nutrient changes in medium and cells of batch-grown sugarcane cultures were investigated over a period of 14 days. Amino acids, PO 4 3− and K+ were substantially removed from the medium during the first seven days of culture; a strong preference for uptake of organic nitrogen over inorganic nitrogen was observed. Sodium uptake increased during the time when K+ was becoming deficient in the medium. The main anions taken up were SO 4 2− and PO 4 3− . Strong acidification and a virtually total extracellular hydrolysis of sucrose in the medium during the first seven days of culture were also observed. Tapering off of the rapid growth phase was accompanied by an increase of intra-cellular sucrose and a decrease of intracellular protein. As cells went from rapid growth into stationary phase, cytoplasmic space of the cells decreased slightly in favor of vacuolar space. Overall cell volume stayed constant throughout the growth cycle, except during a short period before onset of rapid growth. Transport of the glucose analog 3-O-methyl glucose remained constant in terms of Km value but the Vmax was slightly higher in rapidly growing cells. Published with the approval of the Director as paper no. 495 in theJournal Series of the Experiment Station, Hawaiian Sugar Planters' Association  相似文献   

11.
The effect of sodium periodate on the ability of pig spleen lymphocytes to transport the nonmetabolizable amino acid, α-aminoisobutyric acid, was studied. NaIO4-treated cells exhibited a lowered rate of uptake of α-aminoisobutyric acid in contrast to phytohemagglutinin- and concanavalin A-treated cells. However, when periodate-treated cells were preincubated with untreated cells for 2 h, the mixed cells exhibited twofold stimulation in the uptake of α-aminoisobutyric acid as compared to untreated cells. The increased uptake of α-aminoisobutyric acid in mixed cells was due to a change in the V but not in the Km. The observed increased uptake of α-aminoisobutyric acid in mixed cells was inhibited (24%) by ouabain, although the level of uptake in untreated and NaIO4-treated cells was not affected. Na+,K+-ATPase activity in mixed cells, which was ouabain sensitive, was stimulated 56%. Studies also showed that there was a decrease in the fluorescence polarization (P value) of diphenyl hexatriene in mixed cells (P = 0.21) as compared to untreated cells (P = 0.24). These results demonstrate that NaIO4 treatment induces a change in the lymphocyte cell membrane and transport of α-aminoisobutyric acid. Incubation of NaIO4-treated cells with untreated cells is required for the stimulatory effect in the uptake of α-aminoisobutyric acid, and the stimulation appears to be due to changes in Na+,K+-ATPase activity and membrane fluidity.  相似文献   

12.
The inducible, nonenergy-requiring glucose transport system of the yeast Kluyveromyces lactis is inactivated upon starving cells of glucose by (1) transferring logarithmic phase glucose-grown cells to synthetic medium containing a nonglycolytic carbon source, and (2) upon transition of logarithmic phase glucose-grown cells to stationary phase. The steady-state accumulation of nonmetabolizeable 6-deoxyglucose and the apparent Km of transport of 6-deoxyglucose is the same in stationary phase cells and in logarithmic phase cells. The rate of transport is lower in the nongrowing cells. Restoration of activity requires energy and protein synthesis as well as inducer.  相似文献   

13.
Candida lipolytica, grown onn-hexadecane as the sole source of carbon and energy, contained 17.1% lipids in the logarithmic phase of growth, and 7.3% lipids in the stationary phase of growth. When the yeast was grown on glucose, it contained 6.2% lipids in the logarithmic phase of growth, and 3.6% lipids in the stationary phase of growth. Fatty acids, that could be extracted by petroleum ether after saponification, constituted the major part of the fatty acids ofC. lipolytica in its logarithmic phase of growth on glucose. They constituted only a minor amount of the fatty acids in the stationary phase of growth on glucose. The reverse was true when the yeast was grown onn-hexadecane. The broth contained more free, petroleum ether-soluble fatty acids when the cellular lipid content was high than when it was low. Overnight starvation ofC. lipolytica grown onn-hexadecane in a carbon-free nutrient medium, removed the residual cell-bound hydrocarbon, increased the cell population by one half and decreased the cellular lipid content (as % of dry yeast) by one third. Various methods for the determination of lipids, described as appropriate for yeasts were compared. The highest yields were obtained by extraction of the freeze-dried paste, at room temperature, with a 1:1 chloroform-methanol mixture.  相似文献   

14.
The apparent Km of Rb+ uptake and the zeta potential of yeast cells are appreciably affected by changes in the pH, variation of the concentration of the buffer cation Tris+ and addition of Ca2+ to the suspending medium. Irrespective of the way in which the zeta potential is affected, a direct relationship between the apparent Km of the Rb+ uptake and the zeta potential is observed. A reduction of 8 mV in the zeta potential is accompanied by a 20-fold increase in the apparent Km, which illustrates that electrostatic effects in ion uptake cannot be ignored. Measured zeta potentials are, to a good approximation, linearly related to surface potentials evaluated from a kinetic analysis of the Rb+ uptake. This shows the practical use of the zeta potential as a measure of the surface potential in studies of electrostatic effects in ion uptake by yeast. It is concluded that Tris+ and the aikaline earth cations inhibit the Rb+ uptake in yeast exclusively via a reduction in the surface potential. Protons, in addition, exert a competitive inhibition.  相似文献   

15.
16.
E.Hilary Evans  Antony R. Crofts 《BBA》1973,292(1):130-139
1. The induction kinetics of delayed fluorescence have been studied in isolated chloroplasts and compared with the kinetics of H+ uptake. The slow phase of the delayed fluorescence rise, after replotting on a logarithmic scale, had the same half-rise time as H+ uptake.2. The kinetics of decay of the “state” filled during the slow phase of delayed fluorescence induction have been investigated by following the reappearance of the slow phase with increasing dark time after a prior period of illumination.3. The decay of the “state” filled during the slow phase was found to parallel the decay of H+ uptake under a variety of conditions in which the ionic environment was varied, or in the presence of ionophores or uncoupling agents.4. It is suggested that the slow phase of the delayed fluorescence induction occurs as a pH gradient develops across the thylakoid membrane, and that the pH gradient is equivalent to the “state”, the decay of which gave rise to a reappearance of the slow phase.  相似文献   

17.
《BBA》1987,893(1):43-48
Adenosine transport in Vibrio parahaemolyticus was studied. Na+ greatly stimulated adenosine uptake. Addition of adenosine to a cell suspension under anaerobic conditions elicited Na+ uptake, and the Na+ uptake was inhibited by monensin, an Na+ ionophore. Imposition of an electrochemical potential of Na+ or a membrane potential in energy-depleted cells elicited adenosine uptake. Therefore, adenosine transport in this organism was concluded to proceed by an Na+ / adenosine co-transport mechanism. The Na+ / adenosine co-transport system was induced when cells were grown in the presence of adenosine, and repressed by glucose. Although Na+ uptake elicited by adenosine was reduced by glucose, it was enhanced by methyl α-glucoside, which reduced the intracellular ATP level. Thus, the effects of glucose and the glucoside on the Na+ / adenosine co-transport system did not seem to be due to inducer exclusion, but to be related to the intracellular ATP level.  相似文献   

18.
Wheat plants grown during 10 days in the absence of N were pretreated with 1.0 eq m-3 of methionine, asparagine or glutamine and/or 1.0 eq m-3 MSX4 or 0.17 eq m-3 DON. Net NH4 + uptake was measured both in the presence or in the absence of the amino acid or enzyme inhibitor used in the pretreatment. The effect of met, asn and gln on net K+ uptake was also studied using K+-depleted plants. Changes in the contents of root free NH4 +, asn, gln and the activities of GS, PEP-carboxylase, NAD+-GDH and NADH-GDH were determined. Net NH4 + uptake in gln and asn pretreated plants was markedly, and sometimes completely suppressed provided uptake was measured in the presence of the amides. On the other hand, the met pretreated plants absorbed only 35% less NH4 + than the control. When NH4 + uptake was measured in the absence of the amino acids, only those plants pretreated with asn showed a marked suppression of net uptake during the first 120 min. None of the 3 amino acids tested significantly inhibited K+ uptake. Free NH4 + concentration in roots of N-starved plants increased after 4 h incubation with gln, asn or MSX in the absence of external NH4 +. Nevertheless, no correlation was observed between root NH4 + concentration and the extent of net NH4 + uptake suppression. The inhibitory effect exerted by asn decreased when it was supplied together with MSX or DON. Pretreatments with gln or asn in the absence of external NH4 + significantly increased the level of asn in the roots, while that of gln remained unchanged. It is concluded that asn and gln specifically suppress net NH4 + uptake in wheat, although it is not clear wether they act only from the root exterior, or through an endogenous pool exhibiting fast turn-over.Abbreviations AUR ammonium uptake rate - DON 6-diazo-5-oxo-L-norleucine - GDH glutamic dehydrogenase - GOGAT oxoglutarate- glutamine aminotransferase - GS glutamine synthetase - MSX L-methionine sulfoximine - PEP phosphoenolpyruvate - PVPP polyvinylpolypyrrolidone  相似文献   

19.
Summary The uptake of various 14C labelled compounds like (1-14C) glucose, (1-14C) acetate, (2-14C) uracil, (1-14C) leucine and (14C–CH3) methionine was studied in Aspergillus parasiticus. A comparative study of asparagine deficient, zinc deficient and SLS cultures revealed different growth patterns. High lipid levels under zinc and asparagine deficiency were observed. During the stationary phase the synthesis of proteins and DNA declined. The uptake of 14C labelled glucose, methionine and acetate was maximum in asparagine deficient cultures during the transitional and stationary phase of growth. Maximum uptake of labelled methionine and glucose occured during the exponential growth phase (45 h). The uptake of labelled leucine was highest under asparagine deficiency during the exponential and transitional phases but reached a minimum during stationary phase. The uptake of labelled uracil remained high throughout in the asparagine deficient cultures. The mechanism of inhibition of aflatoxin biosynthesis in the absence of zinc and asparagine seems to be different.  相似文献   

20.
In the transition phase of Candida apicola IMET 43747 from logarithmic to stationary growth a pyridine-nucleotide-independent alcohol oxidase was induced coinciding with the beginning of sophorose lipid production. This enzyme was not repressed by glucose and was measurable in stationary cells grown on glucose or on a mixture of n-hexadecane and glucose. An NAD+-dependent aldehyde dehydrogenase behaved in the same way. Both enzymes were localized in the microsomal fraction. The alcohol oxidase accepted long-chain (fatty) aliphatic alcohols (C8 to at least C16) and diols starting from decanediol. Trace activities were found with -hydroxy fatty acids. Aromatic, secondary and tertiary alcohols were not oxidized. In the stationary growth phase the substrate specificity of the alcohol oxidase tends to be changed to more hydrophobic substrates. The physiological role of both enzymes, the alcohol oxidase and aldehyde dehydrogenase, is discussed including their possible involvement in the synthesis of sophorose lipid. Correspondence to: R. K. Hommel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号