首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structure of a putative sodium channel from the sea anemoneAiptasia pallida   总被引:1,自引:0,他引:1  
A cDNA encoding a full length putative sodium channel has been cloned from the sea anemoneAiptasia pallida. The deduced protein, named AiNal, has a predicted molecular weight of 205 000 Da. It shows high structural similarity to other sodium channels from both invertebrates and vertebrates, and its structure is consistent with the four domain, six transmembrane segment motif of all known voltage-gated sodium channels. In the region purported to constitute the tetrodotoxin (TTX) receptor of sodium channels, AiNal differs from the TTX-sensitive motif, suggesting that currents carried by this channel would be insensitive to TTX. The presence of a conventional sodium channel protein in anemones indicates, for the first time, that neurons in sea anemones are likely to be capable of producing fast, overshooting action, potentials.  相似文献   

2.
We reported previously that chick myocardial cells placed into monolayer cell culture lost tetrodotoxin (TTX) sensitivity when tested at 72 h. To further characterize the change, ventricular myocardial cells were dispersed from chick embryos 14–16 days old; these hearts are TTX-sensitive before dispersal. Intracellular microelectrode penetrations were made into spontaneously beating cells at 9–72 h after culturing. No TTX-sensitive cells were found. Spontaneous action potentials with concomitant contractions continued in the presence of TTX (8 μg/ml), and the maximum rate of rise of the action potentials (+ max) (control of 2–20 V/sec) was not reduced. Since the cells did not adhere to the vessel before 9 h, suspensions of cells were studied 1–8 h after dispersal to determine the rapidity of the loss of TTX sensitivity; all cells which contracted spontaneously or responded to electrical stimulation continued to beat in TTX. Addition of cycloheximide or actinomycin D did not prevent the loss of TTX sensitivity. The loss is not due to the use of trypsin (0.01 %) because dispersal by collagenase also resulted in loss of TTX sensitivity. Furthermore, cells separated mechanically (from 8-day-old hearts) also lost TTX sensitivity. In addition, loss of TTX sensitivity did not occur in frog sartorius muscles organ cultured for several days in 0.01 % trypsin. The loss of TTX sensitivity occurred even in multilayered cell cultures. Chronic exposure to carbachol or isoproterenol did not prevent the loss. However, elevation of K+ in the medium (12–60 mM) prevented or reversed the loss of TTX sensitivity in some cells (˜50 %), although + max remained low. Hence, the loss of TTX-sensitive fast Na+ channels upon cell dispersal (a) occurs very rapidly (less than 60 min), (b) is not due to the use of trypsin, (c) is independent of protein synthesis, (d) is not solely a function of cell association, (e) is not influenced by neurotransmitters, and (f) is prevented or reversed by culturing in elevated [K+]0. The mechanism of the changes in characteristics of the cation channels remains to be elucidated.  相似文献   

3.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from –80 to –30 mV was decreased by 30% (–9.0 ± 1.16 pA pF–1 in control and –6.31 ± 0.67 pA pF–1 in hypertrophy, p < 0.05, n= 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle. (Mol Cell Biochem 261: 217–226, 2004)  相似文献   

4.
The electrophysiological properties of a human neuroblastoma cell line, LA-N-5, were studied with the whole-cell configuration of the patch clamp technique before and after the induction of differentiation by retinoic acid, a vitamin A metabolite. Action potentials could be elicited from current clamped cells before the induction of differentiation, suggesting that some neuroblasts of the developing sympathetic nervous system are excitable. The action potential upstroke was carried by a sodium conductance, which was composed of two types of sodium currents, described by their sensitivity to tetrodotoxin (TTX) as TTX sensitive and TTX resistant. TTX-sensitive and TTX-resistant sodium currents were blocked by nanomolar and micromolar concentrations of TTX, respectively. The voltage sensitivity of activation and inactivation of TTX-resistant sodium current is shifted -10 to -30 mV relative to TTX-sensitive sodium current, suggesting that TTX-resistant sodium current could play a role in the initiation of action potentials. TTX-sensitive current comprised greater than 80% of the total sodium current in undifferentiated LA-N-5 cells. The surface density of total sodium current increased from 24.9 to 57.8 microA/microF after cells were induced to differentiate. The increase in total sodium current density was significant (P less than 0.05). The surface density of TTX-resistant sodium current did not change significantly during differentiation, from which we conclude that an increase in TTX-sensitive sodium current underlies the increase in total current.  相似文献   

5.
Summary Electrophysiological and pharmacological properties distinguished subtypes of adult mammalian dorsal root ganglion neurons (DRGn) in monolayer dissociated cell culture. By analogy of action potential waveform and duration, neurons with short duration (SDn) and long duration (LDn) action potentials resembled functionally distinct subtypes of DRGn in intact ganglia. Patch clamp and conventional intracellular recording techniques were combined here to elucidate differences in the ionic basis of excitability of subtypes of DRGn in vitro. Both SDn and LDn were quiescent at the resting potential. Action potentials of SDn were brief (< 2 msec), sensitive to tetrodotoxin (TTX, 5–10 nM), exhibited damped firing during long depolarizations, and did not respond to algesic agents applied by pressure ejection. Action potentials of LDn were 2–6 msec in duration, persisted in 30 µM TTX, and fired repetitively during depolarizing current pulses or exposure to algesic agents (e.g., capsaicin, histamine and bradykinin). Whole-cell recordings from freshly dissociated neurons revealed two inward sodium currents (INa; variable with changes in sodium but not calcium concentration in the superfusate) in various proportions: a rapidly activating and inactivating, TTX-sensitive current; and, a slower, TTX (30 M)-resistant INa. Large neurons, presumable SDn, had predominantly TTX-sensitive current and little TTX-resistant current. The predominent inward current of small neurons, presumably LDn, was TTX-resistant with a smaller TTX-sensitive component. By analogy to findings from intact ganglia, these results suggest that fundamentally different ionic currents controlling excitability of subtypes of DRGn in vitro may contribute to functional differences between subtyes of neurons in situ.  相似文献   

6.
Spontaneous beating of heart-cell aggregates from 4-day chick embryos was initially blocked by 10-5 g/ml tetrodotoxin (TTX). With continued exposure to the drug, the fraction of blocked aggregates decreased from about 80% at 15 min to about 25% at 2–3 h, at which time, beating aggregates had become desensitized to the toxin, showing no response to a fresh dose. Aggregates from 5-day hearts were more sensitive to TTX, but fewer became desensitized in its presence. Desensitization to TTX was not seen in 6- and 7-day aggregates. Inhibition of protein synthesis by cycloheximide did not affect beating or initial sensitivity to TTX of 4-day aggregates, but desensitization failed to occur. Before TTX, the mean value of maximal upstroke velocity (Vmax) of the action potentials in 4-day aggregates was 33 V/s. After desensitization Vmax was 12 V/s. Activity of desensitized aggregates in the presence of TTX was augmented by elevated calcium levels, and suppressed by presumed inhibitors of slow inward current (manganese, D600). Desensitization was reversible; upon removal of TTX 10-5 g/ml, aggregates regained their responsiveness to a fresh dose of the drug with a 2–3 h time-course similar to that of desensitization. This was prevented by continued exposure to TTX at concentrations as low as 10-8 g/ml. These data suggest that (a) desensitization involves a change in the mode of action-potential generating from one involving Na-specific, TTX-sensitive channels to one utilizing slower Mn-sensitive channels; (b) the process of desensitization occurs over a period of 2–3 h and is dependent upon the products of protein synthesis; and (c) desensitization is reversible after removal of TTX over a 2–3 h time-course similar to its onset.  相似文献   

7.
δ-Atracotoxins (δ-ACTXs) are peptide toxins isolated from the venom of Australian funnel-web spiders that slow sodium current inactivation in a similar manner to scorpion α-toxins. We have isolated and determined the amino acid sequence of a novel δ-ACTX, designated δ-ACTX-Hv1b, from the venom of the funnel-web spider Hadronyche versuta. This 42 residue toxin shows 67% sequence identity with δ-ACTX-Hv1a previously isolated from the same spider. Under whole-cell voltage-clamp conditions, the toxin had no effect on tetrodotoxin (TTX)-resistant sodium currents in rat dorsal root ganglion neurones but exerted a concentration-dependent reduction in peak TTX-sensitive sodium current amplitude accompanied by a slowing of sodium current inactivation similar to other δ-ACTXs. However, δ-ACTX-Hv1b is approximately 15–30-fold less potent than other δ-ACTXs and is remarkable for its complete lack of insecticidal activity. Thus, the sequence differences between δ-ACTX-Hv1a and -Hv1b provide key insights into the residues that are critical for targeting of these toxins to vertebrate and invertebrate sodium channels.  相似文献   

8.
We investigated the actions of human recombinant α2-interferon and a secondary messenger of its action, 2′-5′-oligoadenylate, on tetrodotoxin (TTX)-sensitive sodium transport using human (IMR-32) and murine (NIE-115) neuroblastoma cells. In biochemical experiments using22Na, human interferon was shown to increase entry of22Na into IMR-32 neuroblastoma cells through the channels activated by veratrine and scorpion toxin. This increase was clearly dose-dependent. Cell treatment with TTX completely inhibited this sodium transport. On the contrary, 2′-5′-oligoadenylate depressed entry of22Na into neuroblastoma cells. The activation effect was not observed under the action of human α2-interferon on TTX-sensitive sodium flows to the murine neuroblastoma cells, which demonstrated the species-related specificity of this agent.  相似文献   

9.
We used the two-microelectrode voltage clamp technique and tetrodotoxin (TTX) to investigate the possible occurrence of slow inactivation of sodium channels in canine cardiac Purkinje fibers under physiologic conditions. The increase in net outward current during prolonged (5-20 s) step depolarizations (range -70 to +5 mV) following the application of TTX is time dependent, being maximal immediately following depolarization, and declining thereafter towards a steady value. To eliminate the possibility that this time-dependent current was due to inadequate voltage control of these multicellular preparations early during square clamp pulses, we also used slowly depolarizing voltage clamp ramps (range 5-100 mV/s) to ensure control of membrane potential. TTX-sensitive current also was observed with these voltage ramps; the time dependence of this current was demonstrated by the reduction of the peak current magnitude as the ramp speed was reduced. Reducing the holding potential within the voltage range of sodium channel inactivation also decreased the TTX-sensitive current observed with identical speed ramps. These results suggest that the TTX-sensitive time-dependent current is a direct measure of slow inactivation of canine cardiac sodium channels. This current may play an important role in modulating the action potential duration.  相似文献   

10.
The action of purified toxin from the sea anemoneHomostichanthus duerdemi (HTX-1) on the inward sodium current was studied in experiments on isolated neurons from rat spinal ganglia and neuroblastoma cells of clone N-18F1, by an intracellular perfusion and voltage clamp method. HTX-1 was found to delay inactivation of the tetrodotoxin-(TTX-)sensitive inward sodium current and to make it incomplete, but virtually without affecting its activation. The relationship between the fraction of sodium channels modified by the toxin and the HTX-1 concentration is described by a Langmuir isotherm with association constant of (1.1 ± 0.1)·10–7 M (holding potential –100 mV). Under the influence of the toxin the peak inward sodium current was increased by about 80%. Binding of HTX-1 with TTX-sensitive sodium channels is distinguished by strong potential-dependence: at a holding membrane potential of 0 mV the binding constant was an order of magnitude less than at a potential of –100 mV. In the case of brief action of HTX-1 on the nerve cell membrane (under 5 min) the effect of the toxin was completely reversible, but if the time of action of HTX-1 exceeded 30 min, subsequent washing with normal solution for 90 min did not abolish the effect completely.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Pacific Institute of Bioorganic Chemistry, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 402–409, July–August, 1982.  相似文献   

11.
Tetrodotoxin-resistant sodium channels   总被引:4,自引:0,他引:4  
Summary 1. Tetrodotoxin (TTX) has been widely used as a chemical tool for blocking Na+ channels. However, reports are accumulating that some Na+ channels are resistant to TTX in various tissues and in different animal species. Studying the sensitivity of Na+ channels to TTX may provide us with an insight into the evolution of Na+ channels.2. Na+ channels present in TTX-carrying animals such as pufferfish and some types of shellfish, frogs, salamanders, octopuses, etc., are resistant to TTX.3. Denervation converts TTX-sensitive Na+ channels to TTX-resistant ones in skeletal muscle cells, i.e., reverting-back phenomenon. Also, undifferentiated skeletal muscle cells contain TTX-resistant Na+ channels. Cardiac muscle cells and some types of smooth muscle cells are considerably insensitive to TTX.4. TTX-resistant Na+ channels have been found in cell bodies of many peripheral nervous system (PNS) neurons in both immature and mature animals. However, TTX-resistant Na+ channels have been reported in only a few types of central nervous system (CNS). Axons of PNS and CNS neurons are sensitive to TTX. However, some glial cells have TTX-resistant Na+ channels.5. Properties of TTX-sensitive and TTX-resistant Na+ channels are different. Like Ca2+ channels, TTX-resistant Na+ channels can be blocked by inorganic (Co2+, Mn2+, Ni2+, Cd2+, Zn2+, La3+) and organic (D-600) Ca2+ channel blockers. Usually, TTX-resistant Na+ channels show smaller single-channel conductance, slower kinetics, and a more positive current-voltage relation than TTX-sensitive ones.6. Molecular aspects of the TTX-resistant Na+ channel have been described. The structure of the channel has been revealed, and changing its amino acid(s) alters the sensitivity of the Na+ channel to TTX.7. TTX-sensitive Na+ channels seem to be used preferentially in differentiated cells and in higher animals instead of TTX-resistant Na+ channels for rapid and effective processing of information.8. Possible evolution courses for Na+ and Ca2+ channels are discussed with regard to ontogenesis and phylogenesis.  相似文献   

12.
Electrophysiological and pharmacological properties distinguished subtypes of adult mammalian dorsal root ganglion neurons (DRGn) in monolayer dissociated cell culture. By analogy of action potential waveform and duration, neurons with short duration (SDn) and long duration (LDn) action potentials resembled functionally distinct subtypes of DRGn in intact ganglia. Patch clamp and conventional intracellular recording techniques were combined here to elucidate differences in the ionic basis of excitability of subtypes of DRGn in vitro. Both SDn and LDn were quiescent at the resting potential. Action potentials of SDn were brief (less than 2 msec), sensitive to tetrodotoxin (TTX, 5-10 nM), exhibited damped firing during long depolarizations, and did not respond to algesic agents applied by pressure ejection. Action potentials of LDn were 2-6 msec in duration, persisted in 30 microM TTX, and fired repetitively during depolarizing current pulses or exposure to algesic agents (e.g., capsaicin, histamine and bradykinin). Whole-cell recordings from freshly dissociated neurons revealed two inward sodium currents (INa; variable with changes in sodium but not calcium concentration in the superfusate) in various proportions: a rapidly activating and inactivating, TTX-sensitive current; and, a slower, TTX (30 microM)-resistant INa. Large neurons, presumable SDn, had predominantly TTX-sensitive current and little TTX-resistant current. The predominant inward current of small neurons, presumably LDn, was TTX-resistant with a smaller TTX-sensitive component. By analogy to findings from intact ganglia, these results suggest that fundamentally different ionic currents controlling excitability of subtypes of DRGn in vitro may contribute to functional differences between subtypes of neurons in situ.  相似文献   

13.
Summary The ionic requirements for the action potentials recorded from the axon of the dorsal longitudinal stretch receptor inCarausius morosus have been studied using extracellular electrodes.In the intact preparation prolonged exposure to sodium-free, calcium-free, or magnesium-free salines produces no observable change in the amplitude of action potentials. Similarly, tetrodotoxin (1×10–6 M) and cobaltous chloride (1×10–2 M) are both ineffective in blocking the action potentials.In preparations in which the ionic barrier has been disrupted by removal of the nerve sheath the action potentials show sodium dependence. They are sustained in high sodium salines (150 mM) but are reversibly abolished in sodium-free salines. They are also reversibly abolished in 1×10–6 M TTX, but unaffected by calcium-free or magnesium-free salines, or by cobaltous chloride (1×10–2 M).It is concluded that the action currents in the axon of the stretch receptor are carried by sodium ions.  相似文献   

14.
Cells in the pacemaker region of toad (Bufo marinus) sinus venosus had spontaneous rhythmic action potentials. The rate of firing of action potentials, the rate of diastolic depolarization and the maximum rate of rise of action potentials were reduced by TTX (10 nm to 1 m). Currents were recorded with the whole cell, tight seal technique from cells enzymatically dissociated from this region. Cells studied were identified as pacemaker cells by their characteristic morphology, spontaneous rhythmic action potential activity that could be blocked by cobalt but not by TTX and lack of inward rectification. When calcium, potassium and nonselective cation currents (If) activated by hyperpolarization were blocked, depolarization was seen to generate transient and persistent inward currents. Both were sodium currents: they were abolished by tetrodotoxin (10 to 100 nm), their reversal potential was close to the sodium equilibrium potential and their amplitude and reversal potential were influenced as expected for sodium currents when extracellular sodium ions were replaced with choline ions. The transient sodium current was activated at potentials more positive than –40 mV while the persistent sodium current was obvious at more negative potentials. It was concluded that, in toad pacemaker cells, TTX-sensitive sodium currents contributing both to the upstroke of action potentials and to diastolic depolarization may play an important role in setting heart rate.We thank the Australian National Heart Foundation for their support. D.A.S. is an NHMRC Senior Research Officer.  相似文献   

15.
Tetrodotoxin (TTX) is a highly potent neurotoxin that selectively binds to the outer vestibule of voltage-gated sodium channels. Pufferfishes accumulate extremely high concentrations of TTX without any adverse effect. A nonaromatic amino acid (Asn) residue present in domain I of the pufferfish, Takifugu pardalis, Na v1.4 channel has been implicated in the TTX resistance of pufferfishes . However, the effect of this residue on TTX sensitivity has not been investigated, and it is not known if this residue is conserved in all pufferfishes. We have investigated the genetic basis of TTX resistance in pufferfishes by comparing the sodium channels from two pufferfishes (Takifugu rubripes [fugu] and Tetraodon nigroviridis) and the TTX-sensitive zebrafish. Although all three fishes contain duplicate copies of Na v1.4 channels (Na v1.4a and Na v1.4b), several substitutions were found in the TTX binding outer vestibule of the two pufferfish channels. Electrophysiological studies showed that the nonaromatic residue (Asn in fugu and Cys in Tetraodon) in domain I of Na v1.4a channels confers TTX resistance. The Glu-to-Asp mutation in domain II of Tetraodon channel Na v1.4b is similar to that in the saxitoxin- and TTX-resistant Na+ channels of softshell clams . Besides helping to deter predators, TTX resistance enables pufferfishes to selectively feed on TTX-bearing organisms.  相似文献   

16.
The effect of the presence of nerve extracts on the development of tetrodotoxin (TTX)-sensitive sodium channels in cultures of dissociated embryonic chick skeletal muscle cells was examined by measuring the maximum rate of rise of TTX-sensitive spike potential. The addition of the nerve extract prepared from brain or spinal cord of chick embryos to the culture medium caused an increase in the channel density. Extracts of non-neural tissues, i.e., lung, kidney, and muscle, were ineffective. Liver extract, however, produced an effect similar to the nerve extracts. These results suggest that the TTX-sensitive sodium channels in the muscle cell membrane are regulated by a diffusible chemical substance independently of innervation, and that this substance resides in neural tissues, and perhaps also in liver.  相似文献   

17.
It is well known that morphological and functional changes during neural differentiation sometimes accompany the expression of various voltage-gated ion channels. In this work, we investigated whether the enhancement of sodium current in differentiated neuroblastoma × glioma NG108-15 cells treated with dibutyryl cAMP is related to the expression of voltage-gated sodium channels. The results were as follows. (1) Sodium current density on peak voltage in differentiated cells was significantly enhanced compared with that in undifferentiated cells, as detected by the whole-cell patch clamp method. The steady-state inactivation curve in differentiated cells was similar to that for undifferentiated cells, but a hyperpolarized shift in the activation curve for differentiated cells was observed. The sodium currents of differentiated and undifferentiated cells were completely inhibited by 10−7 M tetrodotoxin (TTX). (2) The only NaV mRNA with an increased expression level during neuronal differentiation was that for NaV1.7, as observed by real-time PCR analysis. (3) The increase in the level of NaV1.7 α subunit expression during neuronal differentiation was also observed by immunocytochemistry; in particular, the localization of NaV1.7 α subunits on the soma, varicosities and growth cone was significant. These results suggest that the enhancement of TTX-sensitive sodium current density in differentiated NG108-15 cells is mainly due to the increase in the expression of the TTX-sensitive voltage-gated Na+ channel, NaV1.7.  相似文献   

18.
The inward currents in single smooth muscle cells (SMC) isolated from epididymal part of rat vas deferens have been studied using whole-cell patch-clamp method. Depolarising steps from holding potential -90 mV evoked inward current with fast and slow components. The component with slow activation possessed voltage-dependent and pharmacological properties characteristic for Ca(2+) current carried through L-type calcium channels (I(Ca)). The fast component of inward current was activated at around -40 mV, reached its peak at 0 mV, and disappeared upon removal of Na ions from bath solution. This current was blocked in dose-dependent manner by tetrodotoxin (TTX) with an apparent dissociation constant of 6.7 nM. On the basis of voltage-dependent characteristics, TTX sensitivity of fast component of inward current and its disappearance in Na-free solution it is suggested that this current is TTX-sensitive depolarisation activated sodium current (I(Na)). Cell dialysis with a pipette solution containing no macroergic compounds resulted in significant inhibition of I(Ca) (depression of peak I(Ca) by about 81% was observed by 13 min of dialysis), while I(Na) remained unaffected during 50 min of dialysis. These data draw first evidence for the existence of TTX-sensitive Na(+) current in single SMC isolated from rat vas deferens. These Na(+) channels do not appear to be regulated by a phosphorylation process under resting conditions.  相似文献   

19.
A water-soluble analogue F32 of the fusion peptide from influenza virus hemagglutinin was synthesized. It consisted of 32 aa residues and retained the ability to interact with lipid membranes; its N-terminal sequence 1–24 coincided with that of the fusion protein from hemagglutinin (strain A/PR/8/34), whereas residues 25–32 (GGGKKKKK) provided its solubility in water. The peptide induced the conductivity fluctuations in planar bilayer lipid membranes characteristic of active fusion peptides. Conditions were found using CD spectroscopy under which the structure of F32 inside detergent micelles, where it can be studied by high-resolution 1H NMR spectroscopy, is close to the structure of the peptide during its interaction with phospholipid liposomes.  相似文献   

20.
Tetrodotoxin (TTX) is a potent toxin that specifically binds to voltage-gated sodium channels (NaV). TTX binding physically blocks the flow of sodium ions through NaV, thereby preventing action potential generation and propagation. TTX has different binding affinities for different NaV isoforms. These differences are imparted by amino acid substitutions in positions within, or proximal to, the TTX-binding site in the channel pore. These substitutions confer TTX-resistance to a variety of species. The garter snake Thamnophis sirtalis has evolved TTX-resistance over the course of an arms race, allowing some populations of snakes to feed on tetrodotoxic newts, including Taricha granulosa. Different populations of the garter snake have different degrees of TTX-resistance, which is closely related to the number of amino acid substitutions. We tested the biophysical properties and ion selectivity of NaV of three garter snake populations from Bear Lake, Idaho; Warrenton, Oregon; and Willow Creek, California. We observed changes in gating properties of TTX-resistant (TTXr) NaV. In addition, ion selectivity of TTXr NaV was significantly different from that of TTX-sensitive NaV. These results suggest TTX-resistance comes at a cost to performance caused by changes in the biophysical properties and ion selectivity of TTXr NaV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号