首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the role of dihydrofolate (H2PteGlu) accumulation in the inhibition of de novo purine synthesis by methotrexate (MTX) in human MCF-7 breast cancer cells. Previous studies have shown that cytotoxic concentrations of MTX that inhibit dihydrofolate reductase produce only minimal depletion of the reduced folate cofactor, 10-formyltetrahydrofolate, required for purine synthesis. At the same time, de novo purine synthesis is totally inhibited. In these studies, we show that 10 microM MTX causes inhibition of purine synthesis at the step of phosphoribosylaminoimidazolecarboxamide (AICAR) transformylase, as reflected in a 2-3-fold expansion of the intracellular AICAR pool. The inhibition of purine synthesis coincides with the rapid intracellular accumulation of H2PteGlu, a known inhibitor of AICAR transformylase. When the generation of H2PteGlu is blocked by pretreatment with 50 microM 5-fluorodeoxyuridine (FdUrd), an inhibitor of thymidylate synthase, MTX no longer causes inhibition of purine synthesis. Intermediate levels of H2PteGlu produced in the presence of lower (0.1-10 microM) concentrations of FdUrd led to proportional inhibition of purine biosynthesis, and the exogenous addition of H2PteGlu to breast cells in culture re-established the block in purine synthesis in the presence of FdUrd and MTX. The early phases of inhibition of purine biosynthesis could be ascribed only to H2PteGlu accumulation. MTX polyglutamates, also known to inhibit AICAR transformylase, were present in breast cells only after 6 h of incubation with the parent compounds and were not formed in cells preincubated with FdUrd. The lipid-soluble antifolate trimetrexate, which does not form polyglutamates, produced modest 10-formyltetrahydrofolate depletion, but caused marked H2PteGlu accumulation and a parallel inhibition of purine biosynthesis. This evidence leads to the conclusion that MTX and the lipid-soluble analog trimetrexate cause inhibition of purine biosynthesis through the accumulation of H2PteGlu behind the blocked dihydrofolate reductase reaction.  相似文献   

2.
3.
4.
CTC-SISS-B is an antigen-nonspecific suppressive lymphokine elaborated by an interleukin 2-dependent suppressor T cell line that produces noncytotoxic inhibition of human B cell but not T cell function. Like SISS-B, a soluble suppressive lymphokine present in the supernatants of Con A-activated peripheral blood T cell cultures, CTC-SISS-B is of 60,000 to 90,000 m.w., and its action is blocked by the simple sugar L-rhamnose. CTC-SISS-B inhibits human B cell Ig production and proliferation through a direct interaction with human B cells rather than through indirect effects on immunoregulatory T cells or monocytes. CTC-SISS-B suppression occurs through inhibition of an early event(s) in B cell activation since proliferation and Ig production by established human B cell lines are not inhibited by this lymphokine. Despite sharing many biochemical and biologic properties, CTC-SISS-B and gamma-interferon appear to be distinct mediators.  相似文献   

5.
Dihydrofolate reductase was obtained from Pneumocystis carinii isolated from heavily infected lungs of female Sprague-Dawley rats infected by transtracheal inoculation. The enzyme differed significantly from other forms of dihydrofolate reductase in response to KCl and to antifolate drugs. Dihydrofolate reductase from P. carinii was used to assess activity of analogs of pyrimethamine, methotrexate, and trimetrexate. One pyrimethamine analog was selective for P. carinii dihydrofolate reductase; potency was in the micromolar range. In contrast, 21 methotrexate analogs and 2 trimetrexate analogs were selective for P. carinii dihydrofolate reductase; potencies for these were in the nanomolar range.  相似文献   

6.
This report details the effects of methotrexate on the intracellular folate pools of the MCF-7 human breast cancer cell line. To achieve this goal, we designed a high-pressure liquid chromatography system capable of separating the physiologic folates. The folate pools were quantitated following growth and equilibration in 2.25 microM radiolabeled folic acid. Each of the intracellular folates was identified by coelution with standard folates and by chemical/biochemical tests unique to each of the various folates. The 10-formyl-H4PteGlu (where H4PteGlu represents dl-tetrahydrofolic acid) pool accounted for 20.5% of the total intracellular folate pool in untreated cells, whereas 5-formyl-H4PteGlu and H4PteGlu accounted for 6.5 and 10.6%, respectively. The levels of these three folates remained stable throughout cell growth. The 5-methyl-H4PteGlu pool accounted for less than 10% in early growth phase cells but assumed greater than 60% of the total pool by the mid- and late-log phases of cell growth. When the MCF-7 cells were exposed to 1 microM methotrexate, de novo purine synthesis and de novo thymidylate synthesis were rapidly inhibited to less than 20% of control within 3 h. During this time period, rapid alterations in the folate pools also occurred such that dihydrofolic acid levels rose from less than 1% in untreated cells to greater than 30% of the total pool. This rise was accompanied by a parallel fall in 5-methyl-H4PteGlu. H4PteGlu and 5-formyl-H4PteGlu were undetectable following 2 h of methotrexate exposure, but 10-formyl-H4PteGlu, the required cosubstrate for de novo purine synthesis, was preserved at greater than 80% of pretreatment values following a 1 microM methotrexate exposure of up to 21 h. The rapid inhibition of de novo purine synthesis in these cells following methotrexate exposure coupled with a relatively preserved 10-formyl-H4PteGlu pool suggests direct inhibition of this synthetic pathway by the temporally coincident accumulation of dihydrofolic acid and/or methotrexate polyglutamates. This inhibition cannot be ascribed to depletion of the folate cofactor 10-formyl-H4PteGlu.  相似文献   

7.
High levels of NaCN (20 to 250 mM) were required to inhibit cyclooxygenase catalysis and cause extended lag periods (up to 1.6 min), whereas CO failed to inhibit catalysis. This NaCN inhibition was easily overcome by endogenous or exogenous hydroperoxides. Added hydroperoxides acted to eliminate lag periods without undergoing net conversion to other chemical species. In addition, experiments with glutathione peroxidase inhibition showed that hydroperoxides were essential not only in the early phases, but throughout catalysis. In spectrophotometric experiments, NaCN formed a complex with ferriheme cyclooxygenase (Kd = 1.3 mM) and inhibited hydroperoxide interaction with this form of the enzyme. Phenolic antioxidants, only slightly extended lag periods while inhibiting oxygenation rates more than 50%. Low levels of phenol (which is normally stimulatory) or alpha-naphthol when combined with NaCN or glutathione peroxidase (agents which interfere with peroxide activation) resulted in potent synergistic inhibition with long lag times. A mechanism consistent with all of the above properties of cyclooxygenase has been elucidated, Further mechanistic explanation was sought for reaction-catalyzed self-inactivation of cyclooxygenase. This phenomenon could not be explained simply by heme lability, or cyclooxygenase sensitivity to destruction by ambient hydroperoxides, Rather, it appears to involve a destructive reaction intermediate intrinsic to involve a destructive reaction intermediate intrinsic to the cyclooxygenase mechanism.  相似文献   

8.
9.
10.
Both ascorbic acid and the 1-series prostaglandins have been reported to be important regulators of cell growth and since ascorbic acid also increases the synthesis of the 1-series prostaglandins, it is possible that the effects of ascorbic acid on cell growth might be mediated by changes in 1-series prostaglandin synthesis induced by ascorbic acid. This study attempted to examine this possible relationship. The effects of ascorbic acid, prostaglandin E1 and the essential fatty acid precursors of the prostaglandins, linoleic acid and gamma-linolenic acid on the in vitro growth of transformed BL6 murine melanoma cells and untransformed monkey kidney (LLCMK) cells was determined. The effects of ascorbic acid addition on the growth inhibitory effect of the essential fatty acids and on the activity of delta-6-desaturase, a key enzyme in 1-series prostaglandin synthesis were also examined. Addition of ascorbic acid, prostaglandin E1 and both essential fatty acids was found to reduce BL6 growth while PGE1 and to a lesser extent the essential fatty acids reduced LLCMK cell growth. The growth inhibitory effect of the essential fatty acids was enhanced by ascorbic acid which was also found to stimulate delta-6-desaturase activity in BL6 cells. The growth inhibitory effect of ascorbic acid on BL6 cells may thus be mediated by changes in prostaglandin synthesis through an association with the metabolism of the essential fatty acid precursors of the prostaglandins.  相似文献   

11.
12.
13.
14.
Infectious agents in the eye induce both a local and a systemic humoral immune response. Previously, differences in Ag recognition were observed between systemic and ocular derived IgG of patients with ocular toxoplasmosis. This finding implied a nonrandom distribution of IgG-producing B cells in the inflamed eye. In the present study, we compared the intraocular and systemic B cell responses of patients with ocular toxoplasmosis to a single Toxoplasma gondii Ag. Two series of C-terminally deleted recombinant T. gondii GRA-2 proteins were constructed to delineate IgG B cell epitopes of paired ocular and serum samples. Differences in epitope region recognition between the ocular and systemic compartment were detected in 9 of 13 patients. The difference in distribution of GRA-2 epitopes between paired samples is indicative of a local GRA-2 specific B cell population functionally different from the systemic GRA-2-specific B cell population. Our results suggest a selective activation of a subset of B cells locally in nonlymphoid tissue.  相似文献   

15.
16.
17.
18.
In addition to the x-linked B cell maturation deficit previously reported in CBA/N mice, a functional T cell defect has now been observed. T lymphocyte regulation of the polyclonal PFC response was studied within the context of this x-linked immunodeficiency model. The ability of 1) B cells from (CBA X CBA/CaJ)F1, male mice to respond to nonspecific T cell helper signals and 2) T cells from NCF1 male mice to provide such signals was investigated under in vitro conditions by using bacterial lipopolysaccharide (LPS) as the polyclonal activator. B lymphocytes from both male and female NCF1 mice were receptive to T cell help rendered by NCF1 female T cells. Male T cells. however, were unable to augment polyclonal B cell responses of either NCF1 male or female B cells to LPS. Treatment with ATS + C reduced the polyclonal response of female but not male spleen cells to LPS. This deficit could not be overcome by the use of greater numbers of NCF1 male T cells. The observation that this deficiency in T cell regulation is not due to active suppression suggests that the results may be attributable to an intrinsic T cell defect.  相似文献   

19.
20.
The conversion of 4,4-dimethylcholest-7-enol into 4alpha-methylcholest-7-enol by rat liver microsomal preparations involves the decarboxylation of a sterol 3-oxo-4alpha-carboxylic acid. By using an (18)O-labelled substrate it was shown that this decarboxylation does not involve a Schiff-base intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号