共查询到20条相似文献,搜索用时 0 毫秒
1.
A procedure for the rapid purification of nucleoside diphosphate kinase, 24 h with a single operator, from the chick brain soluble fraction is described. The influence of the ionic conditions on the association-disassociation properties of the enzyme are exploited to obtain yields of 30% from the crude homogenate. The enzyme has been purified 500-fold with a maximal specific activity of 1500 μmol/min/mg at 25°C (using thymidine diphosphate as the phosphate acceptor and ATP as the donor) and is demonstrated to be monoisozymic. 相似文献
2.
Tae Hirakawa-Sakurai Kiyoshi Ohkawa Makoto Matsuda 《Molecular and cellular biochemistry》1993,119(1-2):203-207
A 27,000-fold purification of pyridoxal kinase from bovine brain tissue has been achieved by a combination of ammonium sulfate fractionation, DEAE-cellulose chromatography, hydroxyapatite chromatography, Sephadex G-150 gel filtration, Blue Sepharose CL-6B chromatography, and Phenyl-Superose chromatography. The final chromatography step yields a homogeneous preparation of high specific activity (2105 nmol/min/mg protein). The molecular mass of the native enzyme was estimated to be approximately 80,000 on gel filtration. The subunit molecular mass was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis to be approximately 39,500. This indicates that pyridoxal kinase is a dimeric enzyme. 相似文献
3.
Purification and properties of gammagamma-enolase from pig brain 总被引:1,自引:0,他引:1
Isoelectric focusing revealed three enolase isoforms in pig brain, which were designated as - (pI = 6.5), - (pI = 5.6), and -enolase (pI = 5.2). The pI of purified -enolase was also 5.2. The -enolase isoform of enolase was purified from pig brain by a purification protocol involving heating to 55°C for 3 min, acetone precipitation, ammonium sulfate precipitation (40%–80%), DEAE Sephadex ion-exchange chromatography (pH 6.2), and Sephadex G200 gel filtration. The final specific activity was 82 units/mg protein. As with other vertebrate enolases, -enolase from pig proved to be a dimer with a native mass of 85 kDa and a subunit mass of 45 kDa. The pH optimum for the reaction in the glycolytic direction is 7.2. The K
m values for 2-PGA, PEP, and Mg2+ were determined to be 0.05, 0.25, and 0.50 mM, respectively, similar to K
m values of other vertebrate enolases. The amino acid composition of pig -enolase, as determined by amino acid analysis, shows strong similarity to the compositions of -enolases from rat, human, and mouse, as determined from their amino acid sequences. Despite the differences seen with some residues, and considering the ways that the compositions were obtained, it is assumed that pig -enolase is more similar than the composition data would indicate. Moreover, it is likely that the sequences of pig -enolase and the other -enolases are almost identical. Li+ proved to be a noncompetitive inhibitor with either 2-PGA or Mg2+ as the variable substrate. This enolase crystallized in the monoclinic space group P2, or P21. An R
symm <5% was obtained for data between 50 and 3.65 Å, but was a disappointing 30% for data between 3.65 and 3.10 Å, indicating crystal disorder. 相似文献
4.
A screen of the human cancer genome anatomy project (CGAP) database was performed to search for new proteins involved in tumorigenesis. The resulting hits were further screened for recombinant expression, solubility and protein aggregation, which led to the identification of the previously unknown human cancer-related (HCR) protein encoded by the mRNA NM_032324 as a target for structure determination by NMR. The three-dimensional structure of the protein in its complex with ATPgammaS forms a three-layered alpha/beta sandwich, with a central nine-stranded beta-sheet surrounded by five alpha-helices. Sequence and three-dimensional structure comparisons with AAA+ ATPases revealed the presence of Walker A (GPPGVGKT) and Walker B (VCVIDEIG) motifs. Using 1D (31)P-NMR spectroscopy and a coupled enzymatic assay for the determination of inorganic phosphate, we showed that the purified recombinant protein is active as a non-specific nucleoside triphosphatase, with k(cat)=7.6x10(-3) s(-1). The structural basis for the enzymatic activity of HCR-NTPase was further characterized by site-directed mutagenesis of the Walker B motif, which further contributes to making the HCR-NTPase an attractive new target for further biochemical characterization in the context of its presumed role in human tumorigenesis. 相似文献
5.
Soluble nucleoside triphosphatase differing in its properties from all known proteins with NTPase activity was partially purified from bovine kidneys. The enzyme has pH optimum of 7.5, molecular mass of 60 kDa, as estimated by gel chromatography, and shows an absolute dependence on divalent metal ions. NTPase obeyed Michaelis-Menten kinetics in the range of substrate concentration tested from 45 to 440 microM; the apparent Km for inosine-5'-triphosphate was calculated to be 23.3 microM. The enzyme was found to possess a broad substrate specificity, being capable of hydrolyzing various nucleoside-5'-tri- as well as diphosphates. 相似文献
6.
Hiroaki Kawasaki Masatoshi Itoh Tatsuo Nakahara Akito Nohtomi Motofumi Fukahori 《Neurochemical research》1991,16(11):1227-1233
Endogenous substances which inhibited the binding of [3H]flunitrazepam ([3H]FNZ) to bovine synaptosomal membranes have been purified from the hot acetic acid extracts of the bovine brain. Three peaks of inhibitory activity were obtained by Sephadex G-10 gel chromatography. Two of the peaks (Peak 2, and Peak 3) which had lower molecular weights that that of peak 1 were identified as inosine and hypoxanthine by TLC methods. Another peak (Peak 1) was further purified to homogeneity using both cation and anion ion-exchange chromatography and the following two-step reversed-phase HPLC. The purified substance inhibited the [3H]FNZ binding dose-dependently and competitively but did not have an effect on the binding of the peripheral-type BZ ligand [3H]Ro 5-4864. It was also shown that the substance was heat-stable and resistant to proteolytic degradation (trypsin, -chymotrypsin, pronase). However, a significant loss of inhibitory activity to [3H]FNZ binding was observed after acid hydrolysis. Molecular weight estimates based on gel filtration methods were less than 500 dalton, and the maximal ultraviolet absorption peak was at 314 nm. These results suggest that this substance is a new endogenous ligand for the central BZ receptor and may play an important role in regulating the GABAergic tone in the central nervous system. 相似文献
7.
Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated
pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these
primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the
coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene
fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh
et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that
these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon,
and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3′ untranslated
regions (3′-UTR). There are some similarities between the 3′-UTR of these mRNAs and those of actin and actin binding proteins
in plants. The putative roles of the 3′-UTR and alternative polyadenylation sites are discussed in relation to their possible
role in targeting the mRNAs to different subcellular compartments.
Sequence data from this article were deposited with the DDBJ/EMBL/GenBank Data Libraries under Accession Nos. Genomic sequences
of pea apyrase: AB023621, AB030444, AB030445, AB038554, AB038555. cDNA sequences of pea apyrase: AB022319, AB027614, AB038668,
AB038669. 相似文献
8.
A calcium-activated neutral proteinase was purified from myelin of bovine brain white matter. Myelin purified in the presence of EDTA (2 mM) was homogenized in 50 mM Trisacetate buffer at pH 7.5, containing 4 mM EDTA, 1 mM NaN3, 5 mM -mercaptoethanol and 0.1% Triton X-100 for two hours. After centrifugation at 87,000g for 1 hour, the supernatant was subjected to purification through successive column chromatography as follows: i) DEAE-cellulose, ii) Ultrogel (AC-34) filtration, iii) Phenyl-Sepharose, iv) a second DEAE-cellulose. The enzyme activity was assayed using azocasein as substrate. The myelin enzyme was purified 2072-fold and SDS-PAGE analysis of the purified enzyme revealed a major subunit of 72–76 K. The enzyme was inhibited by iodoacetate (1 mM), leupeptin (1 mM), E-64C (1.6 mM), EGTA (1 mM), antipain (2 mM) and endogenous inhibitor calpastatin (2 g). It required 0.8 mM Ca2+ for half-maximal activation and 5 mM Ca2+ for optimal activation. Mg2+ (5 mM) was ineffective while Zn2+ and Hg2+ were inhibitory. The pH optimum was ranged from 7.5–8.5. Treatment of myelin with Triton X-100 increased the enzyme activity by 10-fold suggesting it is membrane bound whereas the purufied enzyme was not activated by Triton X-100 treatment. The presence of CANP in myelin may mediate the turnover of myelin proteins and myelin breakdown in degenerative brain diseases. 相似文献
9.
Jean-Philippe Bedell Michel Chalot Annick Brun Bernard Botton 《Physiologia plantarum》1995,94(4):597-604
Glutamine synthetase (GS. EC 6.3.1.2) was purified to apparent electrophoretic homogeneity from roots of Pseudotsuga menziesii (Mirb) Franco by a three-step procedure involving diethylaminoethyl (DEAE)-Trisacryl chromatography, affinity chromatography on Matrex Gel Red A. and preparative polyacrylamide gel electrophoresis. The enzyme was purified 40-fold with a 16% recovery. The native enzyme had a molecular mass of 460 ± 5 kDa as estimated by gel filtration, interpolation of the Ferguson plots and non-denaturing gradient-PAGE. It was composed of two different subunits of 54 and 64 kDa. Affinity constants for glutamate (Glu), glutamine (Gln), ATP and ADP were 2.6, 10.5, 0.5 and 0.083 m M . respectively. The enzyme exhibited a negative cooperativity for ammonium (Hill number of 0.7) with two Km values which were 11 and 75 μ M in the presence of ammonium concentrations lower and higher than 1.3 m M , respectively. Glycine and ADP appeared as potential inhibitors of the GS activity. The optimum pH values were 7.2 and 7.6 for the transferase and the biosynthetic assays, respectively. The enzyme lost 30% of its activity within 25 days of storage at 4°C. The optimum temperatures of activity were 40°C and 45°C for the transferase and bio-synthetic activities, respectively. 相似文献
10.
A new form of high affinity fibroblast growth factor receptor has been purified from adult bovine brain membranes. Purification was performed by chromatography on DEAE-Trisacryl and wheat germ agglutinin-agarose followed by FGF-2 affinity chromatography. Affinity labeling of purified fractions with 125I-FGF-2 showed after cross-linking a 170-kDa complex, suggesting the existence of a 150-kDa FGF receptor. No cross-reactivity with anti-FGF receptor 1 (FGFR-1 or flg) or with anti-receptor 2 (FGFR-2 or bek) antibodies could be detected with this partially purified receptor. Heparitinase treatment of the partially purified FGF receptor abolished the formation of the ligand receptor complex. The complex was restored in the presence of heparin in a dose dependent fashion, supporting the idea that heparin-like molecules are needed for proper binding. Further purification of the receptor was achieved by heparin-Sepharose affinity chromatography and yielded a purification of over 320,000-fold. The purified receptor fraction was radiolabeled and loaded on RPLC C4 column. Eluted fractions were analysed by SDS-PAGE. A major 150-kDa band was detected. These data show for the first time a new form of FGF receptor isolated from bovine brain membranes. This purified receptor displays affinity for heparin and was therefore named heparin binding FGF receptor (HB-FGFR). It remains unclear whether the receptor is a proteo-heparin sulfate or whether heparans are strongly associated and therefore are copurified. Large scale preparations are in progress for core protein structure studies. 相似文献
11.
Over the last seven years our laboratory has focused on the determination of the structural aspects of nucleoside triphosphate diphosphohydrolases (NTPDases) using site-directed mutagenesis and computational comparative protein modeling to generate hypotheses and models for the hydrolytic site and enzymatic mechanism of the family of NTPDase nucleotidases. This review summarizes these studies utilizing NTPDase3 (also known as CD39L3 and HB6), an NTPDase family member that is intermediate in its characteristics between the more widely distributed and studied NTPDase1 (also known as CD39) and NTPDase2 (also known as CD39L1 and ecto-ATPase) enzymes. Relevant site-directed mutagenesis studies of other NTPDases are also discussed and compared to NTPDase3 results. It is anticipated that many of the results and conclusions reached via studies of NTPDase3 will be relevant to understanding the structure and enzymatic mechanism of all the cell-surface members of this family (NTPDase1–3, 8), and that understanding these NTPDase enzymes will aid in modulating the many varied processes under purinergic signaling control. This review also integrates the site-directed mutagenesis results with a recent 3-D structural model for the extracellular portion of NTPDases that helps explain the importance of the apyrase conserved regions (ACRs) of the NTPDases. Utilizing this model and published work from Dr Guidotti's laboratory concerning the importance and characteristics of the two transmembrane helices and their movements in response to substrate, we present a speculative cartoon model of the enzymatic mechanism of the membrane-bound NTPDases that integrates movements of the extracellular region required for catalysis with movements of the N- and C-terminal transmembrane helices that are important for control and modulation of enzyme activity. 相似文献
12.
Nucleoside diphosphate kinase in the brain of Bombyx mori was purified by ammonium sulfate fractionation, and a sequence of chromatographies on DEAE-Cellulofine, hydroxyapatite, Mono-S, and Mono-Q column. The purified enzyme preparation was found to be electrophoretically homogeneous on SDS-PAGE, and its molecular mass was determined to be 18 kDa. The purified protein was digested and the amino acid sequences of resulting peptides were determined. The enzyme showed high similarity to the amino acid sequences of the Drosophila NDP kinase. The enzyme showed NDP kinase activity and mediated the phosphorylation of myelin basic protein. Gel filtration and Hill plot analysis indicate that the purified NDP kinase forms a tetramer and shows little interaction among substrates. Dephosphorylation of NDP kinase by bacterial alkaline phosphatase increased NDP kinase activity. This result indicates that phosphorylation of NDP kinase represses NDP kinase activity. 相似文献
13.
H. G. Aghajanyan A. M. Arzumanyan A. A. Arutunyan T. N. Akopyan 《Neurochemical research》1988,13(8):721-727
Two cystatins were purified from tissue extract of bovine brain by alkaline treatment, acetone fractionation, gel chromatography on Sephadex G-75, and affinity chromatography on S-carboxymethyl-papain-Sepharose. One of the inhibitors had a relatively high molecular mass, 25 kDa (HMM-cystatin) with pI 4.7, and the other, 11 kDa (LMM-cystatin) with pI 5.23. Both inhibitors showed considerable stability at pH 2 and 80°C. The cystatins inhibited papain, ficin, and cathepsins B and H, but not trypsin, chymotrypsin, thermolysin, nagarse, and cathepsin D. Ki values for the complexes of papain and the inhibitors were estimated to be 2.8×10–10 M for HMM-cystatin and 1.3×10–9 M for LMM-cystatin. Both purified cystatins prevented degradation of substance P by soluble fraction and lysosomal extract obtained from synaptosomes, but did not suppress the cleavage of the peptide by synaptosomal plasma membranes.Abbreviations HMM-cystatin
high molecular mass inhibitor
- LMM-cystatin
low molecular mass inhibitor
- SP
substance P
- SPM
synaptosomal plasma membranes
- p-CMB
4-chloromercuribenzoic acid
- BK
bradykinin
- Bz-Arg-Nap
N-benzoyl-dl-arginine--naphthylamide
- Arg-Nap
dl-arginine--naphthylamide
- P-Pxy-Hb
hemoglobin initially coupled with pyridoxal-5-phosphate 相似文献
14.
Alcohol oxidase (alcohol: O2 oxidoreductase) from leaves of Tanacetum vulgare has been purified 5150-fold to homogeneity on disc electrophoresis and gel electrofocussing. The enzyme which is probably flavoprotein, has molecular weight 180 000 daltons and is comprised of two sub-units of 94 000 and 75 000 daltons. It is active over a broad range (pH 5–9) and best accepts primary aliphatic alcohols with 6 to 10 carbons, especially those with a 2-ene group. Km values for hex-trans-2-ene-1-ol, geraniol (3,7-dimethylocta-trans-2,6-dien-1-ol) and n-octanol were 0.19, 1.56 and 0.49 mM respectively. The significance of the enzyme in the formation of leaf aldehyde (hex-trans-2-ene-1-al) and in terpene metabolism is discussed. 相似文献
15.
采用冻干浓缩、(NH4)2S04盐析、HiTrapphenyl(FF)疏水层析和QSepharose FastFlow离子交换层析对灵芝EIM-40发酵液进行分离纯化,获得纯化漆酶,纯化倍数为14.6,回收率为5.3%。SDS-PAGE银染的结果为单一条带,相对分子质量约为6.53×104。以愈创木酚和2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)为催化底物进行酶学性质研究,最适pH分别为4.8和4.5,最适温度分别为55和50℃,2种底物在pH4.0。5.0范围内,温度低于50℃时,酶的稳定性都很好。以愈创木酚为底物,Km=645.0umol/L;以ABTS为底物,Km=22.2txmol/L。Cu2+对该酶起激活作用,Fe2+、Ca2+、Ba2+则完全抑制酶的活性。 相似文献
16.
Inmostprocaryotes,theenzymeglutamatesynthase[Lglutamate:NAD(P)+oxidoreductase(transaminating)(EC1.4.1.13or14)](GOGAT),togetherwithglutaminesynthetase[Lglutamate:ammonialigase(ADPforming)(EC6.3.1.2)](GS),hasbeenconsideredtobeanalternativetoglutamatedehydrogenaseinammonia… 相似文献
17.
The enzyme 4-methyleneglutaminase has been purified from Arachis hypogaea leaves. This enzyme also catalysed the deamidation of glutamine at 20% of the rate of 4-methyleneglutamine, exhibiting the same affinity for both substrates (Km 20 mM), but was inactive with asparagine. The hydrolysis of 4-methyleneglutamine was subject to competitive inhibition by glutamine, glutamate-5-hydroxamate and phenol red and non-competitive inhibition by glutamate and 4-methyleneglutamate. The enzyme activity was insensitive to a variety of salts and carboxylic acids. 相似文献
18.
Breer K Girstun A Wielgus-Kutrowska B Staroń K Bzowska A 《Protein expression and purification》2008,61(2):122-130
Calf PNP is a ubiquitous enzyme of the salvage metabolic pathway. The procedure for this enzyme production in large quantities is described. The coding sequence of bovine PNP was amplified from the calf spleen cDNA library and was inserted into an expression vector pET28a(+). The construct was transformed into Escherichia coli BL21(DE3) strain. The protein expression efficiencies in the presence and the absence of IPTG were compared. It was found that IPTG is not necessary for obtaining a large quantity of recombinant calf PNP: 35 mg from 1 L cell culture. The enzyme was purified to 92% homogeneity by a two-step procedure consisting of gel filtration and ion exchange chromatography. The purity of recombinant enzyme is sufficient to form well diffracting single crystals.The basic kinetic parameters of recombinant PNP were determined and compared with the parameters of commercially available PNP from calf spleen. The specific activity in 50 mM phosphate buffer with inosine as a variable substrate (30.7 μmol min−1 mg−1) and other kinetic parameters: Michaelis constants, maximal velocities, dissociation and inhibition constants, determined for several typical PNP ligands, are similar to the values published previously for non-recombinant calf spleen PNP. As expected for mammalian PNP, recombinant calf PNP was found to have no substrate activity vs adenosine. The overexpression and purification method of the recombinant calf PNP provides significant amounts of the enzyme, which can successfully replace the non-recombinant PNP. 相似文献
19.
The anionic form of arylsulphatase B (arylsulphatase Bm) was purified to apparent homogeneity from monkey brain through steps involving chromatography on diethylaminoethyl-cellulose, Blue-Sepharose, Biogel HTP and finally Biogel P-300 gel filtration. The molecular weight of the purified enzyme as deduced by gel filtration on Biogel P-300 and by sodium dodecylsulphate gel electrophoresis was ∼ 30,000.Escherichia coli alkaline phosphatase treatment of arylsulphatase Bm resulted in the conversion of upto 84% of the enzyme into a less charged form of enzyme, that could not bind to diethylaminoethyl cellulose. Potassium phosphate an inhibitor of alkaline phosphatase prevented this conversion. Upon acid hydrolysis the purified enzyme yielded approximately 7.0 mol of inorganic phosphate per mol of protein.Vibrio cholerae neuraminidase treatment did not alter the charge on arylsulphatase Bm. 相似文献
20.
In the investigated 14 day old triticale seedlings a much higher GDH activity was observed in roots than in leaves. The enzyme
from the roots was purified up to the state of homogeneity (about 400 fold). The purified enzyme showed a higher activity
in the presence of reduced coenzyme forms (NAD(P)H) than their oxidated forms. In the presence of NAD(P)H the enzyme showed
absolute specificity to 2-oxoglutarate and in cooperation with NAD(P)+ to L-glutamate. The Km values determined for particular substrates indicate a high affinity of NADPH-GDH to ammonium ions.
Optimum pH, temperature and thermostability of GDH depended on the type and form of the coenzyme. Molecular mass of purified
enzyme was 257 kDa. It seems that native GDH is composed of six identical subunits of the molecular mass 42.5 kDa. 相似文献