首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monomeric haemoglobin IV from Chironomus thummi thummi (CTT IV) exhibits an alkaline Bohr-effect and therefore it is an allosteric protein. By substitution of the haem iron for cobalt the O2 half-saturation pressure, measured at 25 C, increases 250-fold. The Bohr-effect is not affected by the replacement of the central atom. The parameters of the Bohr-effect of cobalt CTT IV for 25 C are: inflection point of the Bohr-effect curve at pH 7.1, number of Bohr protons -log p1/2 (O2)/gDpH=0.36 mol H+/mol O2 and amplitude of the Bohr-effect curve log p1/2 (O2)=0.84. The substitution of protoporphyrin for mesoporphyrin causes a 10 nm blue-shift of the visible absorption maxima in both, the native and the cobalt-substituted forms of CTT IV. Furthermore, the replacement of vinyl groups by ethyl groups at position 2 and 4 of the porphyrin system leads to an increase of O2 affinities at 25 C which follows the order: proto < meso < deutero for iron and cobalt CTT IV, respectively. Again, the Bohr-effect is not affected by the replacement of protoporphyrin for mesoporphyrin or deuteroporphyrin. The electron spin resonance (ESR) spectra of both, deoxy cobalt proto- and deoxy cobalt meso-CTT IV, are independent of pH. The stronger electron-withdrawing effect by protoporphyrin is reflected by the decrease of the cobalt hyperfine constants coinciding with g=2.035 and by the low-field shift of g. The ESR spectra of oxy cobalt proto- and oxy cobalt meso-CTT IV are dependent of pH. The cobalt hyperfine constants coinciding with g=2.078 increase during transition from low to high pH. The pH-induced ESR spectral changes correlate with the alkaline Bohr-effect. Therefore, the two O2 affinity states can be assigned to the low-pH and high-pH ESR spectral species. The low-pH form (low-affinity state) is characterized by a smaller, the high-pH form (high-affinity state) by a larger cobalt hyperfine constant in g. The correlation of the cobalt hyperfine constants of the oxy forms with the O2 affinities is discussed for several monomeric haemoglobins. The Co-O-O bond angle in cobalt oxy CTT IV is characterized by an ozonoid type of binding geometry and varies little during the pH-induced conformation transition. Due to the lack of the distal histidine in CTT IV no additional interaction via hydrogen-bonding with dioxygen is possible; this is reflected by the cobalt hyperfine constants.  相似文献   

2.
In leghemoglobin a, which is the major hemoglobin component in soybean root nodules, the haem iron has been replaced by cobalt. The electron spin resonance (ESR) of frozen solutions of the cobalt-substituted leghemoglobin has been studied at 77 K in the deoxy and oxy forms respectively. Both ligation states exhibit rhombic g tensors. The hyperfine constants of 59Co, 14N-imidazole (residue of the proximal histidine) and 14N-pyrroles are determined for the three principal directions of the g tensor. Both, the oxy and the deoxy state exhibit pH-dependent changes of the hyperfine structures. For oxy cobalt leghemoglobin a quantitative analysis of the pH titration and of the ESR parameters of the low and high-pH forms respectively are performed. The interconversion of the low and the high-pH forms is controlled by a proton-dissociating group with pK=6.4 which is most probably the distal histidine. g tensors and hyperfine constants are compared with those described for oxy cobalt myoglobin crystal spectra [34] allowing assignments of the low and high-pH species of leghemoglobin to stereoelectronic structures with non-equivalent and equivalent dioxygen atoms respectively. Hydrogen-bonding of the distal histidine with dioxygen favours the structure with equivalent oxygen atoms. The pH dependence of the deoxy form is interpreted as interaction of the proximal imidazole with the central cobalt atom.  相似文献   

3.
The monomeric haemoglobin IV from Chironomus thummi thummi (CTT IV) is an allosteric protein characterized by pH-dependent ligand affinities (Bohr-effect). The ligand-linked proton dissociation gives rise to a t r conformational transition. Furthermore, the Bohr-effect is ligand-dependent and decreases in magnitude following the order of ligands, O2 > CO > NO. Although the Bohr-effect for NO is smallest, the electron spin resonance (ESR) spectra of frozen solutions of 15NO-ligated CTT IV measured as higher derivatives at 77 K reflect this pH-dependent conformation change. g Tensor and hyperfine constants coinciding with the principal directions of the g tensor have been evaluated for 57Fe, 15NO, 14NE-imidazole, and 14N-pyrroles.Hyperfine parameters and g values of both conformation states of this haemoglobin, i.e., of the t state at low pH with low ligand affinity and of the r state at high pH with high ligand affinity, are characteristic for a hexacoordinated nitrosyl haem complex. The change in pH leads to a variation of the Fe-N-O bond angle which is larger at high pH (r conformation) than at low pH (t conformation). Furthermore, the spin transfer from NO into iron orbitals is larger at high pH than at low pH. These results are consistent with the assumption that the interaction of proximal imidazole and iron is smaller in the r conformation than in the t conformation.Binding of anionic detergents to nitrosyl CTT IV causes a conversion of the native (t, r) into a denatured (super-r) structure. The latter, on the basis of hyperfine and g values, apparently contains a pentacoordinated nitrosyl haem complex. Because of the extreme displacement of the proximal imidazole in the super-r structure, the Fe-N-O gouping is nearly linear and a large spin transfer from NO into iron orbitals occurs. Removal of anionic detergents from the protein leads to a full reconversion of the super-r into the native conformations.These structure-related changes of hyperfine constants and g tensor further support the assumption that the trans-effect of the proximal imidazole is an important link of allosteric interactions in haemoglobins.  相似文献   

4.
The monomeric insect (Chironomus thummi thummi) haemoglobins CTT III and CTT IV show an alkaline Bohr effect. The amplitude of the Bohr effect curve of CTT IV is about twice as large as that of CTT III. In particular, at low pH a time-dependent 'slow' decrease in p50 upon cyclic oxygenation/deoxygenation is observed which is larger if dithionite, instead of ascorbate, is the reducing agent. The decrease of p50 (increase in affinity) correlates with the ratio of haem-rotational components exhibiting an increase of the 'myoglobin-like' haem-rotational component with high O2 affinity and high stability of the globin-haem complex. The replacement of protohaem IX by mesohaem IX and deuterohaem IX, respectively, causes an increase in O2 affinity following the order: proto less than meso less than deutero CTT Hbs. The Bohr effect, however, seems not to be affected by these porphyrin side-group substitutions. The O2 affinity is modulated by steric effects due to the substituents in position 2 and 4 via variation of the protein-haem interactions which influence the O2 release. The replacement of iron by cobalt in proto and meso CTT IV leads to an increase of the p50 by two to three orders of magnitude. Neither central metal nor vinyl replacement affect the Bohr effect. The natural CTT Hbs III and IV analyzed for mono-componential kinetic systems exhibit pH-dependent O2 off-rate constants: 300 s-1 (at pH 5.6) and 125 s-1 (at pH 9.7) for CTT III, and 550 s-1 (at pH 5.4) and 100 s-1 (at pH 9.0) for CTT IV. Inflection points and amplitudes of the log koff/pH plots correspond to those obtained from the Bohr effect curves indicating again a larger Bohr effect for CTT IV than for CTT III. In contrast, the O2 on-rate constants are pH-independent (kon = 1.15-1.26 X 10(8) M-1 s-1). Thus, the Bohr effect is completely controlled by the off-rate constants. Analysis for bi-componential kinetic systems employing the eigenfunction expansion method clearly identifies two kinetic components for proto-IX and deutero-IX CTT Hbs which can be attributed to the two haem-rotational components x and y (x and y differ due to an 180 degree rotation of the haem group about the alpha,gamma-meso axis; y is the myoglobin-like haem-rotational component).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The substitution of iron for cobalt in the monomeric insect hemoglobin CTT (Chironomus thummi thummi) III does not alter the Bohr effect for O2-binding. The cobalt substitution in this hemoglobin allows us to identify not only the O-O and Co-O2 stretching mode but also the Co-O-O bending mode by resonance Raman spectroscopy. The assignments were made via 16O2/18O2 isotope exchange. The modes associated with the Co-O-O moiety are pH-dependent. These pH-induced changes of the resonance Raman spectra are correlated with the t = r conformation transition. At high pH (high-affinity state) two unperturbed O-O stretching modes are observed at 1,068 cm-1 (major component) and 1,093 cm-1 (minor component) for the 18O2 complex. These frequencies correspond to split modes at 1,107 cm-1 and 1,136 cm-1 and an unperturbed mode at approximately 1,153 cm-1 for the 16O2 complex. At low pH (low-affinity state) the minor component becomes the major component and vice versa. The Co-O2 stretching frequency varies for approximately 520 cm-1 (pH 5.5) to 537 cm-1 (pH 9.5) indicating a stronger (hence shorter) Co-O2 bond in the high-affinity state. On the other hand, the O-O bond is weakened upon the conversion of the low- to the high-affinity state. The Co-O-O bending mode changes from 390 cm-1 (pH 9.5) to 374 cm-1 (pH 5.5). In the deoxy form the resonance Raman spectra are essentially pH-insensitive except for a vinyl mode at 414 cm-1 (pH 5.5), which is shifted to 416 cm-1 (pH 5.5).  相似文献   

6.
Resonance Raman spectroscopy has been employed to detect the iron-proximal histidine stretching mode in deoxyhemoglobins from insect larvae of Chironomus thummi thummi (CTT). With the excitation of 413.1 nm, we observe a sharp and intense line in the 220-224 cm-1 region. The assignment of this line to the Fe-N epsilon (His) stretching mode was made on the basis of a 3-cm-1 shift upon 57Fe/54Fe isotope substitution. The Fe-N epsilon (His) vibration is used to monitor the possible changes in the Fe-N epsilon (His) bond strength (hence bone length) in the deoxy state of the monomeric (CTT I, III, and IV) and dimeric (CTT II) insect hemoglobins. As these hemoglobins differ in O2 affinity, off-rate and on-rate constants, and in the Bohr effect, they are excellent model systems for investigating the mechanism of protein control of the heme reactivity. Some of these hemoglobins (CTT III, IV, and II) are allosteric, exhibiting two interconvertible conformational states with high and low O2 affinity at high and low pH, respectively. The Fe-N epsilon (His) stretching frequency does not correlate with the O2 affinity, the on-rate and the off-rate constants for different hemoglobins, for different conformational states, and for modified hemoglobins with different heme peripheral groups. This vibrational mode is insensitive to deuteration of the heme vinyl groups. It is important to note that the Fe-N epsilon (His) bonds in the high pH (high-affinity) and the low pH (low-affinity) states are identical. This implies that the O2 molecule, prior to binding, "sees" identical binding sites. Thus, the difference in free energy changes upon O2 binding is manifested only in the oxy form.  相似文献   

7.
The resonance Raman spectra of the two affinity states of the CO-ligated monomeric insect hemoglobins, Chironomus thummi thummi (CTT) III ad IV, have been investigated. We have identified (via 54Fe/57Fe and 13C18O/12C16O isotope exchange) the Fe-N epsilon(His) stretching mode at approximately 317 cm-1. This stretching mode changes from 329 (pH 5.5) to 317 cm-1 (pH 9.5) reflecting the pH-induced t in equilibrium with r conformational transition. The Fe-CO stretching mode is also pH-sensitive changing from 483 (pH 5.2) to 485 cm-1 (pH 9.2) in 57Fe CTT III . 13C18O complex. However the C-O stretching mode is pH-insensitive. The nonallosteric monomeric insect hemoglobin CTT I does not exhibit a pH-dependence of these vibrational modes. pH-Induced effects were also observed for a vinyl bending mode at 379 cm-1 (pH 9.5) in CTT III deuterated at the beta-carbons of the vinyls in position 2 and 4. It shifts to 390 cm-1 at pH 5.5. The other vinyl vibration at 573 cm-1 exhibits intensity enhancement via through-space coupling with the Fe-C-O bending mode. Our resonance Raman data provide the first direct evidence that the trans-effect is operative as a trigger mechanism for ligand-binding in monomeric allosteric insect hemoglobins. In going from the low-affinity to the high-affinity state, the Fe-N epsilon(His) bond becomes weaker, whereas the Fe-CO bond becomes stronger.  相似文献   

8.
Larvae of the dipteran insect Chironomus thummi thummi that burrow in fresh-water muds, contain at least 12 hemoglobin (Hb) components of which the functional properties have not been systematically documented, although their amino acid sequences have been elucidated, showing mutually distinct primary structures. We isolated eight components (the monomeric Hbs CTT I, CTT III and CTT IV and the dimeric Hbs CTT II beta, CTT VI, CTT VIIB, CTT IX and CTT X) and measured in each O2 affinity and cooperativity and their pH dependence, and the effects of temperature, NaCl and ATP. The O2 affinities, Bohr- and temperature effects of the isohemoglobins are discussed in relation to mode of life and the microenvironmental conditions to which the larvae are subjected in nature, and with regard to the molecular mechanisms underlying the Hb-oxygenation reactions.  相似文献   

9.
1. Baboon ferrochelatase was purified to apparent homogeneity. 2. The pH optimum was 7.85 and the pI 5.3. 3. The estimated molecular weight was 205 K made up by two 50 + 60 K heterodimers. 4. The Km values for proto- and mesoporphyrin were 18.5 and 10.8 microM with iron as co-substrate. With cobalt as co-substrate the Km values were 34.5 and 10.4 microM, respectively. The mean Km value for iron was 2.2 microM while cobalt acted as a complete inhibitor. 5. Lead played a dual role that of both pseudo substrate and inhibitor. As shown by inhibitor kinetics, Pb acted as a two-step two-site parabolic competitive inhibitor. The mean Ki value at low Pb levels was 0.65 mM and at high levels 0.17 mM. 6. Substrate inhibition occurred above 36 microM for proto- and 44 microM for mesoporphyrin with iron as co-substrate. For iron, with mesoporphyrin as co-substrate it occurred above 29 microM.  相似文献   

10.
The interaction of chloride, fluoride and phosphate ions with the molybdenum centre of sulphite oxidase in the pH range 6.2 to 9.6 has been studied by e.p.r. of Mo(V) in the enzyme reduced by sulphite. Detailed studies were made from e.p.r. spectra recorded at about 120K and more limited studies from spectra of liquid samples at about 295K and also from enzyme activity measurements. Interconversion between low-pH and high-pH Mo(V) e.p.r. signal-giving species [described by Lamy, Gutteridge & Bray (1980) Biochem. J. 185, 397-403] is influenced by chloride concentration, a 10-fold increase in concentration (in the range of about 1 mM to 100 mM) causing an increase of about 1 pH unit in the apparent pK for the conversion. This suggests that chloride is a constituent of the low-pH species. In support of this, high concentrations of fluoride modified the e.p.r. spectrum. Partial conversion to a Mo(V) species, in which F- has presumably replaced Cl- and showing hyperfine coupling of A(19F)av. 0.5mT, is indicated. It is proposed that interconversion between high-pH and low-pH species is of the form: (formula; see text) No evidence that Cl- is essential for enzymic activity was found. Data relating to equilibria amongst low-pH, high-pH and also the phosphate species are presented. Depending on pH and on concentrations of Cl- and H2PO4-, one, two, or all three species may be present. Qualitatively, under appropriate conditions, the phosphate species tends to replace some or all of the low-pH species. Quantitative analysis by a computer procedure permitted an appropriate scheme to be deduced and equilibrium constants to be evaluated. Studies on the e.p.r. signals at 295K indicated that similar equilibria applied in liquid solution, but with some changes in the values of the constants. The structure of the molybdenum centre in its various states and the nature of the enzymic reaction are discussed.  相似文献   

11.
Gupta S  Warne A  Saraste M  Mazumdar S 《Biochemistry》2001,40(20):6180-6189
The pH-induced conformational transition in the CuA domain of subunit II of cytochrome oxidase of Paracoccus denitrificans (PdII) has been investigated using various spectroscopic and stopped-flow kinetic methods. UV-visible absorption and circular dichroism studies showed that an increase in pH from 6 to 10 leads to a conformation change with pK(a) = 8.2 associated with the CuA site of the protein. The secondary structure of the protein was, however, shown to remain unchanged in these two conformational states. Thermal and urea-induced unfolding studies showed that the "low-pH" conformation is more stable compared to the "high-pH" conformation of the protein. Moreover, the overall stability of the protein was found to decrease on reduction of the metal centers in the low-pH form, while the oxidation state of the metal centers did not have any significant effect on the overall stability of the protein in the high-pH form. Stopped-flow pH-jump kinetic studies suggested that the conformational transition is associated with a slow deprotonation step followed by fast conformational equilibrium. The results are discussed in the light of understanding the pH-induced conformational change in the beta-barrel structure of the protein and its effect on the coordination geometry of the metal site.  相似文献   

12.
The monomeric hemoglobin fractions of Chironomus thummi thummi (CTT) and Chironomus thummi piger (CTP) differ in the ratio of their components. The determination of the primary structure of the component CTP III was achieved by automatic Edman degradation of the native chain, the tryptic peptides and the C-terminal fragment, obtained by cleavage at the single tryptophan residue. It revealed two chains in the ratio 1:1 which share the ambiguity threonine/isoleucine in position 57 with CTT III. Whereas one chain is identical to the CTT III hemoglobin, the other differs in having isoleucine in position 105 and alanine in position 134. The CTP monomeric hemoglobin fraction comprises 8% of a component (CTP IV A) with a more negative charge than CTT IV but with an identical sequence up to position 44. This study reveals a very high polymorphism within Chironomus species and points out the need for more data at the gene level in order to provide better understanding of this striking phenomenon.  相似文献   

13.
Artificial myoglobins (Mbs) substituted for protoheme with Co(II) proto-and mesoporphyrins IX (proto-and meso-CoMbs, respectively) were prepared. The principal values and eigenvectors of g tensors and the hyperfine coupling tensors of the paramagnetic Co(II) centers of their deoxy forms have been determined by single crystal EPR spectroscopy at 77 K in order to elucidate orientation and electronic structure of the prosthetic group in myoglobin. The orientation of the porphyrin plane of deoxy meso-CoMb were found to be identical to that of deoxy proto-CoMb. However, the in-plane hyperfine coupling constants of deoxy meso-CoMb were more anisotropic and larger than those of deoxy proto-CoMb, suggesting an increase in the electron spin density on the Co(II) ion upon the exchange of protoporphyrin IX with mesoprophyrin IX. Powder EPR spectra of these CoMbs, which were measured at S- and L-band microwave frequencies, exhibited well resolved 59Co hyperfine splittings and can be clearly interpreted by the use of the EPR parameters obtained from single crystal EPR measurements.  相似文献   

14.
Cobalt myoglobins (Aplysia) have been reconstituted from apo-myoglobin (Aplysia) and proto-, meso-, and deutero-cobalt porphyrins. Each of them showed the 30--60 times lower oxygen affinity than those of the corresponding cobalt myoglobins (Sperm whale). Kinetic investigation of their oxygenation by the temperature-junp relaxation technique showed that the low oxygen affinity of cobalt myoglobin (Aplysia) is due to a large dissociation rate constant. the electron paramagnetic resonance (EPR) spectrum of oxy cobalt myoglobin (Aplysia) is affected by the replacement of H2O with D2O, suggesting a possible interaction between the bound oxygen and the neighboring hydrogen atom. A low temperature photodissociation study showed that the product of photolysis of oxy cobalt myoglobin (Aplysia) gives an EPR spectrum different from that of the deoxy-cobalt myoglobin (Aplysia) and from that of the photolysed form of oxy-cobalt myogloin (Sperm whale). These observations suggest that in oxy-cobalt myoglobin (Aplysia) the bound oxygen might interact with amino acid adjacent to it, but the interaction is weaker than that in oxy cobalt myoglobin (Sperm whale).  相似文献   

15.
In a recent report, Bertini et al. (Biochem. Biophys. Res. Comm.78, 158–160 (1977)) argued that the low-pH form of Co2+-substituted bovine carbonic anhydrase contains a rapidly exchanging water molecule at the cobalt site. The basis for this was the observation of a pH-independent contribution to the solvent water proton relaxation rate; it was suggested that the result was unobserved by previous workers because of the presence of sulfate in the sample buffer. We have repeated the experiments of Bertini et al. and find that the results can be attributed to an ionic strength-induced shift of the pK of the group responsible for the relaxation enhancement. The amount of high-pH form of the enzyme present (determined spectrophotometrically) at every pH correlates with the relaxation rate, whereas the fraction of high-pH form present at a given pH depends on ionic strength. These results are in agreement with earlier data indicating that the low-pH form of the enzyme does not contribute to solvent water proton relaxation.  相似文献   

16.
Resonance Raman spectroscopy has been used to investigate the allosteric control mechanism for O2 binding in a cobalt-substituted dimeric insect hemoglobin (CTT II), which exhibits a large Bohr effect due to a pH-induced transition between two ligand affinity states. Substitution of cobalt for iron in CTT II does not modify the Bohr effect, but permits the resonance enhancement (hence the detection) of Raman lines corresponding to the vibrations of the axial ligand-cobalt bonds. Using 16O2/18O2 isotope substitution the O-O and Co-O2 stretching and the Co-O-O bending mode have been assigned to the two affinity states of this hemoglobin: v (O-O) changes from 1152 cm-1 (pH 5.5; t conformation) to about 1125 cm-1 (pH 9.5, r conformation), v (Co-O2) from 512 cm-1 (pH 5.5) to 537 cm-1 (pH 9.5) and delta (Co-O-O) from 378 cm-1 (pH 5.5) to 390 cm-1 (pH 9.5). The Co-N epsilon (His) stretching mode has also been detected changing from 313 cm-1 (pH 5.5) to 307 cm-1 (pH 9.5). For the first time, reciprocal behaviour between the Co-N epsilon and Co-O2 bonds and between the Co-O2 and the O-O bonds in an allosteric hemoglobin are demonstrated. Furthermore, the pH sensitivity of a vinyl bending mode in the range of 411-415 cm-1 has been investigated and shown also to reflect the t in equilibrium with r conformation transition.  相似文献   

17.
S H Lin  N T Yu  K Gersonde 《FEBS letters》1988,229(2):367-371
Resonance Raman spectroscopy has been employed to determine the vibrational modes of monomeric nitrosyl manganese Chironomus thummi thummi hemoglobin (CTT IV). This insect hemoglobin has no distal histidine. By applying various isotope-labeled nitric oxides (14N16O, 15N16O, 14N18O), we have identified the Mn11-NO stretching model at 628 cm-1, the Mn11-N-O bending mode at 574 cm-1 and the N-O stretching mode at 1735 cm-1. The results suggest a strong Mn11-NO bond and a weak N-O bond. The vinyl group substitution does not influence the nu (Mn11-NO), delta (Mn11-N-O) and nu (N-O) vibrations. The Mn11-NO stretching frequency is insensitive to distal histidine interactions with NO, whereas the N-O stretching frequency is sensitive. Nitric oxide also binds to Met manganese CTT IV to form an Mn111. NO complex which undergoes a slow but complete autoreduction resulting in the Mn11.NO species. In manganese meso-IX CTT IV, the Mn111. NO Mn11. NO conversion alters the intensities of the porphyrin ring modes at 342, 360, 1587 and 1598 cm-1, but shifts the frequencies at 1504 and 1633 cm-1 (in Mn111.NO) to 1497 and 1630 cm-1 (in Mn11. NO), respectively. The unshifted marker line at 1378 cm-1 reflects the fact that the pi electron densities of the porphyrin ring are the same in the two complexes.  相似文献   

18.
Human hemoglobin containing cobalt protoporphyrin IX or cobalt hemoglobin has been separated into two functionally active alpha and beta subunits using a new method of subunit separation, in which the -SH groups of the isolated subunits were successfully regenerated by treatment with dithiothreitol in the presence of catalase. Oxygen equilibria of the isolated subunit chains were examined over a wide range of temperature using Imai's polarographic method (Imai, K., Morimoto, H., Kotani, M., Watari, H., and Kuroda, M. (1970) Biochim. Biophys. Acta 200, 189-196). Kinetic properties of their reversible oxygenation were investigated by the temperature jump relaxation method at 16 degrees. Electron paramagnetic resonance characteristics of the molecules in both deoxy and oxy states were studies at 77K. The oxygen affinity of the individual regenerated chains was higher than that of the tetrameric cobalt hemoglobin and was independent of pH. The enthalpy changes of the oxygenation have been determined as -13.8 kcal/mol and -16.8 kcal/mol for the alpha and beta chains, respectively. The rates of oxygenation were similar to those reported for iron hemoglobin chains, whereas those of deoxygenation were about 10(2) times larger. The effects of metal substitution on oxygenation properties of the isolated chains were correlated with the results obtained previously on cobalt hemoglobin and cobalt myoglobin. The EPR spectrum of the oxy alpha chain showed a distinctly narrowed hyperfine structure in comparison with that of the oxy beta chain, indicating that the environment around the paramagnetic center (the bound oxygen) is different between these chains. In the deoxy form, EPR spectra of alpha and beta chains were indistinguishable. These observations suggest that one of the inequivalences between alpha and beta chains might exist near the distal histidine group.  相似文献   

19.
Specific modification of the monomeric fraction III of ferri-hemoglobin from insect larvae Chironomus thummi thummi (Hb CTT) was studied on histidyl residues His-G19 (pK 4,8), His-E5 (pK 7,3) and Met-H22 at different pH using iodacetamide and spin label 2,2,6,6-tetramethyl-4-bromacethyl-piperidin-1-oxyl, an analogue of bromacetate. The analysis of the products of carboxymethylation (CM) showed that at pH 5,0 two products of modification CM-(His-G19)-Hb CTT, and CM-(Met-H22)-Hb CTT were obtained. In the case of modification at pH 7,2 with a spin label dicarboxymethylatid product CM-(His-G19)-CM (His-E5)-Hb CTT is obtained. In all products the degree of modification was one spin label per mole protein. Based on the data on the primery and tertiary structures Hb CTT and the results of the investigation, different reactivity of His-G19 and His-E5, as well as the cause of the absence of the product of carboxymethylation on His-G2 have been discussed. By analizing the absorption spectra of carboxymethylated derivatives of hemoglobin in the ultraviolet and visible region, as well as from the pH dependence curves of the absorption at Soret band in the interval pH 5,5-11,5 it has been shown that carboxymethylation of His-G19 and His E5 is not accompanied by any substantial disturbance of the structures of aquous-complexes Hb CTT. Modification of Met-H22 leads to strong changes in the absorption spectrum and to the absence of pH dependence of the absorption at Soret band, which indicates a change in the aquous-complexes Hb CTT structure.  相似文献   

20.
Electron spin resonance (ESR) spectra of frozen aqueous solutions of NO · haem · base complexes and NO · haem intercalated into dodecyl sulfate micelles have been measured at 77 K and analyzed for the hyperfine components of 15NO,14N-base, 14N-pyrroles and 57Fe which coincide with the principal directions of the g tensor. The influence of the basicity of the nitrogen base on the spin distribution and geometry of the Fe-N-O grouping has been demonstrated by replacing imidazole for pyridine and by comparing the ESR spectra with those obtained for the monomeric insect haemoglobin CTT IV.The comparison of the hyperfine parameters described for the so-called pentacoordinated nitrosyl complex of CTT IV with those of the NO · haem intercalated into detergent micelles has furnished evidence that the ESR spectrum of this conformation state of haemoglobin has to be definitely assigned to a pentacoordinated nitrosyl complex.The azz values increase with the following orders: CTT IV (2.98 mT) < imidazole complex (3.04mT) < pyridine complex (3.15mT) for 15NO, and pyridine complex (0.59 mT) < imidazole complex (0.67 mT) < CTT IV (0.70 mT) for the 14N-base. This result is in conformity with an increase of the donor and the acceptor strengths of the nitrogen base in trans-position to 15NO. The ayy and axx components of 15NO and the 14N-base are strongly nonequivalent in the nitrosyl haemoglobin CTT IV, and less nonequivalent in the NO · haem · pyridine complex, indicating bending of the Fe-N-O grouping. The hyperfine components of the axial ligands coinciding with the x and y component of the g tensor are nearly equal for the NO · haem · imidazole complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号