共查询到20条相似文献,搜索用时 0 毫秒
1.
Dbl family guanine nucleotide exchange factors 总被引:27,自引:0,他引:27
Yi Zheng 《Trends in biochemical sciences》2001,26(12):18202-732
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP–GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge. 相似文献
2.
Small GTPases of the Rho family, Rho, Rac, and Cdc42, are critical regulators of the changes in the actin cytoskeleton. Rho GTPases are typically activated by Dbl-homology (DH)-domain-containing guanine nucleotide exchange factors (GEFs). Recent genetic and biochemical studies revealed a new type of GEF for the Rho GTPases. This family is composed of 11 genes, designated as Dock1 to Dock11, and is structurally divided into four classes Dock-A, -B, -C, and -D. Dock-A and -B subfamilies are typically GEFs specific for Rac1, while the Dock-D subfamily is specific for Cdc42. Here we show that Dock6, a member of the Dock-C subfamily, exchanges GDP for GTP for Rac1 and Cdc42 in vitro and in vivo. Furthermore, we find that, in mouse N1E-115 neuroblastoma cells, expression of Dock6 is increased following differentiation. Transfection of the catalytic Dock Homology Region-2 (DHR-2) domain of Dock6 promotes neurite outgrowth mediated by Rac1 and Cdc42. Conversely, knockdown of endogenous Dock6 by small interference RNA reduces activation of Rac1 and Cdc42 and neurite outgrowth. Taken together, these results suggest that Dock6 differs from all of the identified Dock180-related proteins, in that it is the GEF specific for both Rac1 and Cdc42 and may be one of physiological regulators of neurite outgrowth. 相似文献
3.
4.
Dbl family guanine nucleotide exchange factors (GEFs) are characterized by the presence of a catalytic Dbl homology domain followed invariably by a lipid-binding pleckstrin homology (PH) domain. To date, substrate recognition and specificity of this family of GEFs has been reported to be mediated exclusively via the Dbl homology domain. Here we report the novel and unexpected finding that, in the Dbl family Rac-specific GEF P-Rex2, it is the PH domain that confers substrate specificity and recognition. Moreover, the beta3beta4 loop of the PH domain of P-Rex2 is the determinant for Rac1 recognition, as substitution of the beta3beta4 loop of the PH domain of Dbs (a RhoA- and Cdc42-specific GEF) with that of P-Rex2 confers Rac1-specific binding capability to the PH domain of Dbs. The contact interface between the PH domain of P-Rex2 and Rac1 involves the switch loop and helix 3 of Rac1. Moreover, substitution of helix 3 of Cdc42 with that of Rac1 now enables the PH domain of P-Rex2 to bind this Cdc42 chimera. Despite having the ability to recognize this chimeric Cdc42, P-Rex2 is unable to catalyze nucleotide exchange on Cdc42, suggesting that recognition of substrate and catalysis are two distinct events. Thus substrate recognition can now be added to the growing list of functions that are being attributed to the PH domain of Dbl family GEFs. 相似文献
5.
Signals triggered by diverse receptors modulate the activity of Rho family proteins, although the regulatory mechanism remains largely unknown. On the basis of their biochemical activity as guanine nucleotide exchange factors (GEFs), Dbl family proteins are believed to be implicated in the regulation of Rho family GTP-binding proteins in response to a variety of extracellular stimuli. Here we show that GEF activity of full-length proto-Dbl is enhanced upon tyrosine phosphorylation. When transiently coexpressed with the activated form of the non-receptor tyrosine kinase ACK1, a downstream target of Cdc42, Dbl became tyrosine-phosphorylated. In vitro GEF activity of Dbl toward Rho and Cdc42 was augmented following tyrosine phosphorylation. Moreover, accumulation of the GTP-bound form of Rho and Rac within the cell paralleled ACK-1-dependent tyrosine phosphorylation of Dbl. Consistently, activation of c-Jun N-terminal kinase downstream of Rho family GTP-binding proteins was also enhanced when Dbl was tyrosine-phosphorylated. Collectively, these findings suggest that the tyrosine kinase ACK1 may act as a regulator of Dbl, which in turn activates Rho family proteins. 相似文献
6.
Xiang S Kim EY Connelly JJ Nassar N Kirsch J Winking J Schwarz G Schindelin H 《Journal of molecular biology》2006,359(1):35-46
The synaptic localization of ion channel receptors is essential for efficient synaptic transmission and the precise regulation of diverse neuronal functions. In the central nervous system, ion channel receptors reside in the postsynaptic membrane where they are juxtaposed to presynaptic terminals. For proper function, these ion channels have to be anchored to the cytoskeleton, and in the case of the inhibitory glycine and gamma-amino-butyric acid type A (GABA(A)) receptors this interaction is mediated by a gephyrin centered scaffold. Highlighting its central role in this receptor anchoring scaffold, gephyrin interacts with a number of proteins, including the neurospecific guanine nucleotide exchange factor collybistin. Collybistin belongs to the Dbl family of guanine nucleotide exchange factors, occurs in multiple splice variants, and is specific for Cdc42, a small GTPase belonging to the Rho family. The 2.3 Angstroms resolution crystal structure of the Cdc42-collybistin II complex reveals a novel conformation of the switch I region of Cdc42. It also provides the first direct observation of structural changes in the relative orientation of the Dbl-homology domain and the pleckstrin-homology domain in the same Dbl family protein. Biochemical data indicate that gephyrin negatively regulates collybistin activity. 相似文献
7.
Cdc42 and Rac stimulate exocytosis of secretory granules by activating the IP(3)/calcium pathway in RBL-2H3 mast cells 总被引:13,自引:0,他引:13
下载免费PDF全文

We have expressed dominant-active and dominant-negative forms of the Rho GTPases, Cdc42 and Rac, using vaccinia virus to evaluate the effects of these mutants on the signaling pathway leading to the degranulation of secretory granules in RBL-2H3 cells. Dominant-active Cdc42 and Rac enhance antigen-stimulated secretion by about twofold, whereas the dominant-negative mutants significantly inhibit secretion. Interestingly, treatment with the calcium ionophore, A23187, and the PKC activator, PMA, rescues the inhibited levels of secretion in cells expressing the dominant-negative mutants, implying that Cdc42 and Rac act upstream of the calcium influx pathway. Furthermore, cells expressing the dominant-active mutants exhibit elevated levels of antigen-stimulated IP(3) production, an amplified antigen-stimulated calcium response consisting of both calcium release from internal stores and influx from the extracellular medium, and an increase in aggregate formation of the IP(3) receptor. In contrast, cells expressing the dominant-negative mutants display the opposite phenotypes. Finally, we are able to detect an in vitro interaction between Cdc42 and PLCgamma1, the enzyme immediately upstream of IP(3) formation. Taken together, these findings implicate Cdc42 and Rac in regulating the exocytosis of secretory granules by stimulation of IP(3) formation and calcium mobilization upon antigen stimulation. 相似文献
8.
Guanine nucleotide exchange factor (GEF) domains of the Dbl family occur in a variety of proteins that include multiple protein-protein and protein-lipid interaction domains. We used an epithelial-derived cell line to investigate the mechanisms by which the two GEF domains of Kalirin, a neuronal Rho GEF, influence morphology. As expected, Kal-GEF1, an efficient GEF for Rac1 and RhoG, induced the formation of lamellipodia resembling those induced by active Rac1. Although Kal-GEF1 activated Rac and Pak, its ability to induce formation of lamellipodia was not blocked by dominant negative Rho GTPases or by catalytically inactive Pak. Consistent with this, a catalytically inactive mutant of Kal-GEF1 induced formation of lamellipodia and activated Pak. Active Pak was required for the GEF-activity independent effect of Kal-GEF1 and the lamellipodia produced were filled with ribs of filamentous actin. Kal-GEF1 and a GEF-dead mutant co-immunoprecipitated with Pak. The interaction of Kal-GEF1 with Pak is indirect and requires the regulatory protein binding domain of Pak. Filamin A, which is known to interact with and activate Pak, binds to both catalytically active and inactive Kal-GEF1, providing a link by which catalytically inactive Kal-GEF1 can activate Pak and induce lamellipodia. Together, our results indicate that Kal-GEF1 induces lamellipodia through activation of Pak, where GEF activity is not required. GEF-activity-independent effects on downstream targets may be a general property of RhoGEFs. 相似文献
9.
The biochemical role of guanine nucleotide exchange factors (GEFs) in catalyzing small GTPase GDP-GTP exchange is thought to be twofold: stimulation of GDP dissociation and stabilization of a nucleotide-free GTPase intermediate. Here we report that TrioN, a Dbl family GEF, activates Rac1 by facilitating GTP binding to, as well as stimulating GDP dissociation from, Rac1. The TrioN-catalyzed GDP dissociation is dependent upon the structural nature and the concentration of free nucleotide, and nucleotide binding serves as the rate-limiting step of the GEF reaction. The TrioN-stimulated nucleotide exchange may undergo a novel two nucleotide-one G-protein intermediate involving two cryptic subsites on Rac1 induced by the GEF, with one subsite contributing to the recognition of the beta/gamma phosphates of the incoming GTP and another to the binding of the guanine base of the leaving GDP. We propose that the Rac GEF reaction may proceed by competitive displacement of bound GDP by GTP through a transient intermediate of GEF-[GTP-Rac-GDP]. 相似文献
10.
Reuther GW Lambert QT Booden MA Wennerberg K Becknell B Marcucci G Sondek J Caligiuri MA Der CJ 《The Journal of biological chemistry》2001,276(29):27145-27151
Leukemia-associated Rho guanine nucleotide exchange factor (LARG) was originally identified as a fusion partner with mixed-lineage leukemia in a patient with acute myeloid leukemia. LARG possesses a tandem Dbl homology and pleckstrin homology domain structure and, consequently, may function as an activator of Rho GTPases. In this study, we demonstrate that LARG is a functional Dbl protein. Expression of LARG in cells caused activation of the serum response factor, a known downstream target of Rho-mediated signaling pathways. Transient overexpression of LARG did not activate the extracellular signal-regulated kinase or c-Jun NH(2)-terminal kinase mitogen-activated protein kinase cascade, suggesting LARG is not an activator of Ras, Rac, or Cdc42. We performed in vitro exchange assays where the isolated Dbl homology (DH) or DH/pleckstrin homology domains of LARG functioned as a strong activator of RhoA, but exhibited no activity toward Rac1 or Cdc42. We found that LARG could complex with RhoA, but not Rac or Cdc42, in vitro, and that expression of LARG caused an increase in the levels of the activated GTP-bound form of RhoA, but not Rac1 or Cdc42, in vivo. Thus, we conclude that LARG is a RhoA-specific guanine nucleotide exchange factor. Finally, like activated RhoA, we determined that LARG cooperated with activated Raf-1 to transform NIH3T3 cells. These data demonstrate that LARG is the first functional Dbl protein mutated in cancer and indicate LARG-mediated activation of RhoA may play a role in the development of human leukemias. 相似文献
11.
Sacco E Fantinato S Manzoni R Metalli D De Gioia L Fantucci P Alberghina L Vanoni M 《FEBS letters》2005,579(30):6851-6858
Cdc25Mm is a mammalian Ras-specific guanine nucleotide exchange factor (GEF). By homology modeling we show that it shares with Sos-GEF the structure of the putative catalytic HI hairpin where the dominant negative T1184E mutation is located. Similarly to Cdc25MmT1184E, the isolated wild-type and mutant hairpins retain the ability to displace Ras-bound nucleotide, originate a stable Ras/GEF complex and downregulate the Ras pathway in vivo. These results indicate that nucleotide re-entry and Ras/GEF dissociation--final steps in the GEF catalytic cycle--require GEF regions different from the HI hairpin. GEF down-sizing could lead to development of novel Ras inhibitors. 相似文献
12.
Chahdi A Sorokin A Dunn MJ Landry Y 《Biochemical and biophysical research communications》2004,317(2):384-389
Carbachol stimulates granule exocytosis, phospholipase C (PLC), and phospholipase D (PLD) in RBL-2H3hm1 mast cells by a mechanism that involves Galphaq. However, mastoparan stimulates the same responses through Gi protein. Both Gi and Galphaq pathways are suppressed by Clostridium difficile toxin B, suggesting that Rac and Cdc42 small GTPases are also involved. Over-expression of beta1Pix, a guanine nucleotide exchange factor for Rac and Cdc42, enhances mastoparan-but not carbachol-induced hexosaminidase secretion and PLC and PLD activation. Furthermore, cells expressing beta1Pix exhibit elevated levels of mastoparan-stimulated IP3 production. Taken together, these findings implicate beta1Pix in regulating hexoasaminidase secretion and IP3 production in early stage upon mastoparan stimulation. 相似文献
13.
Protein synthesis in Drosophila melanogaster embryos. Two mechanisms for guanine nucleotide exchange on eukaryotic initiation factor 2 总被引:2,自引:0,他引:2
The mechanism for guanine nucleotide exchange with eukaryotic initiation factor-2 (eIF-2) from Drosophila melanogaster embryos was studied using the reaction eIF-2 X [3H]GDP + GDP (GTP) in equilibrium eIF-2 X GDP (GTP) + [3H]GDP. When highly purified eIF-2 is used the rate of nucleotide exchange is greatly reduced by Mg2+ and this reduction is overcome by the guanine-nucleotide-exchange factor (GEF) of rabbit reticulocytes. This GEF-dependent exchange is inhibited when Drosophila eIF-2 is either phosphorylated by the hemin-controlled inhibitor (HCI) of rabbit reticulocytes or treated with phosphatidylserine or a rabbit eIF-2 X phosphatidylserine complex. The Mg2+ impairment of guanine nucleotide exchange is less severe when highly purified eIF-2 is incubated at a higher temperature (37 degrees C) and is not observed at any temperature if partially purified eIF-2 is used instead of the highly purified factor. In the latter two cases the exchange is not inhibited by either phosphorylation with HCI or phospholipid treatment of Drosophila eIF-2, possibly suggesting that the observed exchange is not mediated by a GEF-like factor. Our data support two possible mechanisms for GDP/GTP exchange with Drosophila embryos eIF-2: a GEF-dependent exchange, similar to that described in rabbit reticulocytes, which may be regulated by phosphorylation of eIF-2, and a factor-independent exchange which appears to be insensitive to this type of control. 相似文献
14.
Rehmann H Rueppel A Bos JL Wittinghofer A 《The Journal of biological chemistry》2003,278(26):23508-23514
Epac1 is a guanine nucleotide exchange factor (GEF) for the small GTPase Rap1 that is directly activated by cAMP. This protein consists of a regulatory region with a cAMP-binding domain and a catalytic region that mediates the GEF activity. Epac is inhibited by an intramolecular interaction between the cAMP-binding domain and the catalytic region in the absence of cAMP. cAMP binding is proposed to induce a conformational change, which allows a LID, an alpha-helix at the C-terminal end of the cAMP-binding site, to cover the cAMP-binding site (Rehmann, H., Prakash, B., Wolf, E., Rueppel, A., de Rooij, J., Bos, J. L., and Wittinghofer, A. (2003) Nat. Struct. Biol. 10, 26-32). Here we show that mutations of conserved residues in the LID region affect cAMP binding only marginally but have a drastic effect on cAMP-induced GEF activity. Surprisingly, some of the mutants have an increased maximal GEF activity compared with wild type. Furthermore, mutation of the conserved VLVLE sequence at the C-terminal end of the LID into five alanine residues makes Epac constitutively active. From these results we conclude that the LID region plays a pivotal role in the communication between the regulatory and catalytic part of Epac. 相似文献
15.
Inka Fricke 《FEBS letters》2009,583(1):75-80
Plant G proteins of the ROP/RAC family regulate cellular processes including cytoskeletal rearrangement in polar growth. Activation of the ROP molecular switch is triggered by guanine nucleotide exchange factors. Plant-specific RopGEFs are exclusively active on ROPs despite their high homology to animal Rho proteins. Based on a sequence comparison of ROPs vs. animal Rho proteins together with structural data on distinct ROPs, we identified unique substrate determinants of RopGEF specificity by mutational analysis: asparagine 68 next to switch II, arginine 76 of a putative phosphorylation motif and the Rho insert are essential for substrate recognition by RopGEFs. These data also provide first evidence for a function of the Rho insert in interactions with GEFs. 相似文献
16.
17.
de Bruyn KM de Rooij J Wolthuis RM Rehmann H Wesenbeek J Cool RH Wittinghofer AH Bos JL 《The Journal of biological chemistry》2000,275(38):29761-29766
Ral is a ubiquitously expressed Ras-like small GTPase. Several guanine nucleotide exchange factors for Ral have been identified, including members of the RalGDS family, which exhibit a Ras binding domain and are regulated by binding to RasGTP. Here we describe a novel type of RalGEF, RalGEF2. This guanine nucleotide exchange factor has a characteristic Cdc25-like catalytic domain at the N terminus and a pleckstrin homology (PH) domain at the C terminus. RalGEF2 is able to activate Ral both in vivo and in vitro. Deletion of the PH domain results in an increased cytoplasmic localization of the protein and a corresponding reduction in activity in vivo, suggesting that the PH domain functions as a membrane anchor necessary for optimal activity in vivo. 相似文献
18.
Identification of a regulatory subcomplex in the guanine nucleotide exchange factor eIF2B that mediates inhibition by phosphorylated eIF2. 总被引:3,自引:4,他引:3
下载免费PDF全文

Eukaryotic translation initiation factor 2B (eIF2B) is a five-subunit complex that catalyzes guanine nucleotide exchange on eIF2. Phosphorylation of the alpha subunit of eIF2 [creating eIF2(alphaP]) converts eIF2 x GDP from a substrate to an inhibitor of eIF2B. We showed previously that the inhibitory effect of eIF2(alphaP) can be decreased by deletion of the eIF2B alpha subunit (encoded by GCN3) and by point mutations in the beta and delta subunits of eIF2B (encoded by GCD7 and GCD2, respectively). These findings, plus sequence similarities among GCD2, GCD7, and GCN3, led us to propose that these proteins comprise a regulatory domain that interacts with eIF2(alphaP) and mediates the inhibition of eIF2B activity. Supporting this hypothesis, we report here that overexpression of GCD2, GCD7, and GCN3 specifically reduced the inhibitory effect of eIF2(alphaP) on translation initiation in vivo. The excess GCD2, GCD7, and GCN3 were coimmunoprecipitated from cell extracts, providing physical evidence that these three proteins can form a stable subcomplex. Formation of this subcomplex did not compensate for a loss of eIF2B function by mutation and in fact lowered eIF2B activity in strains lacking eIF2(alphaP). These findings indicate that the trimeric subcomplex does not possess guanine nucleotide exchange activity; we propose, instead, that it interacts with eIF2(alphaP) and prevents the latter from inhibiting native eIF2B. Overexpressing only GCD2 and GCD7 also reduced eIF2(alphaP) toxicity, presumably by titrating GCN3 from eIF2B and producing the four-subunit form of eIF2B that is less sensitive to eIF2(alphaP). This interpretation is supported by the fact that overexpressing GCD2 and GCD7 did not reduce eIF2(alphaP) toxicity in a strain lacking GCN3; however, it did suppress the impairment of eIF2B caused by the gcn3c-R104K mutation. An N-terminally truncated GCD2 protein interacted with other eIF2B subunits only when GCD7 and GCN3 were overexpressed, in accordance with the idea that the portion of GCD2 homologous to GCD7 and GCN3 is sufficient for complex formation by these three proteins. Together, our results provide strong evidence that GCN3, GCD7, and the C-terminal half of GCD2 comprise the regulatory domain in eIF2B. 相似文献
19.
The effect of Mg2+ and guanine nucleotide exchange factor on the binding of guanine nucleotides to eukaryotic initiation factor 2 总被引:2,自引:0,他引:2
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed. 相似文献
20.
Cdc42, a member of the Rho subfamily of small GTPases, is highly conserved in both sequence and function across eukaryotic species. In budding yeast, Cdc42 triggers polarized growth necessary for bud emergence via rearrangement of the actin cytoskeleton. It has been shown that the role of Cdc42 in bud emergence requires both Cdc28-Cln (G1) kinase and the passage through START. In this report, we show that Cdc42 also serves an essential function in the establishment of bud site prior to START by catalyzing the translocation of bud-site components such as Spa2 to the cell cortex. Our analysis of various conditional alleles of CDC42 suggests that these two functions (bud site establishment and bud emergence) are genetically separable. Surprisingly, the role of Cdc42 in the cortical localization of Spa2 appears to be independent of its well known GTP/GDP exchange factor Cdc24. We also provide evidence that this role of Cdc42 requires the function of the COPI coatomer complex. 相似文献