首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
H Ma  M Gamper  C Parent    R A Firtel 《The EMBO journal》1997,16(14):4317-4332
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium.  相似文献   

2.
Guanylyl cyclases in eukaryotic unicells were biochemically investigated in the ciliates Paramecium and Tetrahymena, in the malaria parasite Plasmodium and in the ameboid Dictyostelium. In ciliates guanylyl cyclase activity is calcium-regulated suggesting a structural kinship to similarly regulated membrane-bound guanylyl cyclases in vertebrates. Yet, cloning of ciliate guanylyl cyclases revealed a novel combination of known modular building blocks. Two cyclase homology domains are inversely arranged in a topology of mammalian adenylyl cyclases, containing two cassettes of six transmembrane spans. In addition the protozoan guanylyl cyclases contain an N-terminal P-type ATPase-like domain. Sequence comparisons indicate a compromised ATPase function. The adopted novel function remains enigmatic to date. The topology of the guanylyl cyclase domain in all protozoans investigated is identical. A recently identified Dictyostelium guanylyl cyclase lacks the N-terminal P-type ATPase domain. The close functional relation of Paramecium guanylyl cyclases to mammalian adenylyl cyclases has been established by heterologous expression, respective point mutations and a series of active mammalian adenylyl cyclase/Paramecium guanylyl cyclase chimeras. The unique structure of protozoan guanylyl cyclases suggests that unexpectedly they do not share a common guanylyl cyclase ancestor with their vertebrate congeners but probably originated from an ancestral mammalian-type adenylyl cyclase.  相似文献   

3.
DdGCA is a Dictyostelium guanylyl cyclase with a topology typical for mammalian adenylyl cyclases containing 12 transmembrane-spanning regions and two cyclase domain. In Dictyostelium cells heterotrimeric G-proteins are essential for guanylyl cyclase activation by extracellular cAMP. In lysates, guanylyl cyclase activity is strongly stimulated by guanosine 5'-3-O-(thio) triphosphate (GTPgammaS), which is also a substrate of the enzyme. DdGCA was converted to an adenylyl cyclase by introducing three point mutations. Expression of the obtained DdGCA(kqd) in adenylyl cyclase-defective cells restored the phenotype of the mutant. GTPgammaS stimulated the adenylyl cyclase activity of DdGCA(kqd) with properties similar to those of the wild-type enzyme (decrease of K(m) and increase of V(max)), demonstrating that GTPgammaS stimulation is independent of substrate specificity. Furthermore, GTPgammaS activation of DdGCA(kqd) is retained in several null mutants of Galpha and Gbeta proteins, indicating that GTPgammaS activation is not mediated by a heterotrimeric G-protein but possibly by a monomeric G-protein.  相似文献   

4.

Background

In our previous study we found that the expression of stlA showed peaks both in the early and last stages of development and that a product of SteelyA, 4-methyl-5-pentylbenzene-1,3-diol (MPBD), controlled Dictyostelium spore maturation during the latter. In this study we focused on the role of SteelyA in early stage development.

Principal Findings

Our stlA null mutant showed aggregation delay and abnormally small aggregation territories. Chemotaxis analysis revealed defective cAMP chemotaxis in the stlA null mutant. cAMP chemotaxis was restored by MPBD addition during early stage development. Assay for cAMP relay response revealed that the stlA null mutant had lower cAMP accumulation during aggregation, suggesting lower ACA activity than the wild type strain. Exogenous cAMP pulses rescued the aggregation defect of the stlA null strain in the absence of MPBD. Expression analysis of cAMP signalling genes revealed lower expression levels in the stlA null mutant during aggregation.

Conclusion

Our data indicate a regulatory function by SteelyA on cAMP signalling during aggregation and show that SteelyA is indispensable for full activation of ACA.  相似文献   

5.
Dictyostelium cells form a multicellular organism through the aggregation of independent cells. This process requires both chemotaxis and signal relay in which the chemoattractant cAMP activates adenylyl cyclase through the G protein-coupled cAMP receptor cAR1. cAMP is produced and secreted and it activates receptors on neighboring cells, thereby relaying the chemoattractant signal to distant cells. Using coimmunoprecipitation and mass spectrometric analyses, we have identified a TOR-containing complex in Dictyostelium that is related to the TORC2 complex of Saccharomyces cerevisiae and regulates both chemotaxis and signal relay. We demonstrate that mutations in Dictyostelium LST8, RIP3, and Pia, orthologues of the yeast TORC2 components LST8, AVO1, and AVO3, exhibit a common set of phenotypes including reduced cell polarity, chemotaxis speed and directionality, phosphorylation of Akt/PKB and the related PKBR1, and activation of adenylyl cyclase. Further, we provide evidence for a role of Ras in the regulation of TORC2. We propose that, through the regulation of chemotaxis and signal relay, TORC2 plays an essential role in controlling aggregation by coordinating the two essential arms of the developmental pathway that leads to multicellularity in Dictyostelium.  相似文献   

6.
The migration of cells according to a diffusible chemical signal in their environment is called chemotaxis, and the slime mold Dictyostelium discoideum is widely used for the study of eukaryotic chemotaxis. Dictyostelium must sense chemicals, such as cAMP, secreted during starvation to move towards the sources of the signal. Previous work demonstrated that the gskA gene encodes the Dictyostelium homologue of glycogen synthase kinase 3 (GSK3), a highly conserved serine/threonine kinase, which plays a major role in the regulation of Dictyostelium chemotaxis. Cells lacking the GskA substrates Daydreamer and GflB exhibited chemotaxis defects less severe than those exhibited by gskA (GskA null) cells, suggesting that additional GskA substrates might be involved in chemotaxis. Using phosphoproteomics we identify the GskA substrates PdeD, dynacortin and SogA and characterize the phenotypes of their respective null cells in response to the chemoattractant cAMP. All three chemotaxis phenotypes are defective, and in addition, we determine that carboxylesterase D2 is a common downstream effector of GskA, its direct substrates PdeD, GflB and the kinases GlkA and YakA, and that it also contributes to cell migration. Our findings identify new GskA substrates in cAMP signalling and break down the essential role of GskA in myosin II regulation.  相似文献   

7.
8.
Chemoattractant-mediated Rap1 activation requires GPCR/G proteins   总被引:1,自引:0,他引:1  
Cha I  Lee SH  Jeon TJ 《Molecules and cells》2010,30(6):563-567
Rap1 is rapidly activated upon chemoattractant stimulation and plays an important role in cell adhesion and cytoskeletal reorganization during chemotaxis. Here, we demonstrate that G-protein coupled receptors and G-proteins are essential for chemoattractant-mediated Rap1 activation in Dictyostelium. The rapid Rap1 activation upon cAMP chemoattractant stimulation was absent in cells lacking chemoattractant cAMP receptors cAR1/cAR3 or a subunit of the heterotrimeric G-protein complex Gα2. Loss of guanylyl cyclases GCA/SGC or a cGMP-binding protein GbpC exhibited no effect on Rap1 activation kinetics. These results suggest that Rap1, a key regulator for the regulation of cytoskeletal reorganization during cell movement, is activated through the G-protein coupled receptors cAR1/cAR3 and Gα2 proteins in a way independent of the cGMP signaling pathway.  相似文献   

9.
The heterotrimeric G protein, G2, from the eukaryotic organism Dictyostelium discoideum participates in signal transduction pathways which are essential to Dictyostelium's developmental life cycle. G2 is activated by cell surface cAMP receptors and in turn is required for the activation of a host of effectors, including adenylyl cyclase, guanylyl cyclase, and phospholipase C. Myristoylation of G protein alpha-subunits is known to affect alpha-subunit association with the beta gamma subunits and membrane localization. The putative site for N-terminal myristoylation of G alpha 2 was mutated from Gly to Ala (G2A) and expressed in the g alpha 2-null cell line, MYC2. Transformants expressing G alpha 2-G2A exhibit physiological and biochemical changes from wild-type cells. G alpha 2-G2A expressing cells fail to rescue the aggregation-minus phenotype of MYC2 cells on developmental agar plates. G alpha 2-G2A expressing cells are also not chemotactic to cAMP in a standard drop assay. G alpha 2-WT is found in both the pellet and supernatant fractions following lysis of the cells. G alpha 2-G2A however is found almost exclusively in the lysate supernatant. G alpha 2 is radiolabeled upon incubation of cells in [3H]myristate, while G alpha 2-G2A is not labeled. Examination of activation of the effectors adenylyl cyclase and guanylyl cyclase reveals that G alpha 2-G2A expressing cells partially activate adenylyl cyclase but show no cAMP-stimulation of guanylyl cyclase. The physiological deviations from wild-type can be explained by the variations in effector activation, possibly due to improper localization of the non-myristoylated G alpha 2-G2A to the cytosol.  相似文献   

10.
We have isolated two adenylyl cyclase genes, designated ACA and ACG, from Dictyostelium. The proposed structure for ACA resembles that proposed for mammalian adenylyl cyclases: two large hydrophilic domains and two sets of six transmembrane spans. ACG has a novel structure, reminiscent of the membrane-bound guanylyl cyclases. An aca- mutant, created by gene disruption, has little detectable adenylyl cyclase activity and fails to aggregate, demonstrating that cAMP is required for cell-cell communication. cAMP is not required for motility, chemotaxis, growth, and cell division, which are unaffected. Constitutive expression in aca- cells of either ACA or ACG, which is normally expressed only during germination, restores aggregation and the ability to complete the developmental program. ACA expression restores receptor and guanine nucleotide-regulated adenylyl cyclase activity, while activity in cells expressing ACG is insensitive to these regulators. Although they lack ACA, which has a transporter-like structure, the cells expressing ACG secrete cAMP constitutively.  相似文献   

11.
12.
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.  相似文献   

13.
14.
The Dictyostelium genome encodes only two MAPKs, Erk1 and Erk2, and both are expressed during growth and development. Reduced levels of Erk2 expression have been shown previously to restrict cAMP production during development but still allow for chemotactic movement. In this study the erk2 gene was disrupted to eliminate Erk2 function. The absence of Erk2 resulted in a complete loss of folate and cAMP chemotaxis suggesting that this MAPK plays an integral role in the signaling mechanisms involved with this cellular response. However, folate stimulation of early chemotactic responses, such as Ras and PI3K activation and rapid actin filament formation, were not affected by the loss of Erk2 function. The erk2 cells had a severe defect in growth on bacterial lawns but assays of bacterial cell engulfment displayed only subtle changes in the rate of bacterial engulfment. Only cells with no MAPK function, erk1erk2 double mutants, displayed a severe proliferation defect in axenic medium. Loss of Erk2 impaired the phosphorylation of Erk1 in secondary responses to folate stimulation indicating that Erk2 has a role in the regulation of Erk1 activation during chemotaxis. Loss of the only known Dictyostelium MAPK kinase, MekA, prevented the phosphorylation of Erk1 but not Erk2 in response to folate and cAMP confirming that Erk2 is not regulated by a conventional MAP2K. This lack of MAP2K phosphorylation of Erk2 and the sequence similarity of Erk2 to mammalian MAPK15 (Erk8) suggest that the Dictyostelium Erk2 belongs to a group of atypical MAPKs. MAPK activation has been observed in chemotactic responses in a wide range of organisms but this study demonstrates an essential role for MAPK function in chemotactic movement. This study also confirms that MAPKs provide critical contributions to cell proliferation.  相似文献   

15.
The mechanism of chemotaxis is one of the most interesting issues in modern cell biology. Recent work shows that shallow chemoattractant gradients do not induce the generation of pseudopods, as has been predicted in many models. This poses the question of how else cells can steer towards chemoattractants. Here we use a new computational algorithm to analyze the extension of pseudopods by Dictyostelium cells. We show that a shallow gradient of cAMP induces a small bias in the direction of pseudopod extension, without significantly affecting parameters such as pseudopod frequency or size. Persistent movement, caused by alternating left/right splitting of existing pseudopodia, amplifies the effects of this bias by up to 5-fold. Known players in chemotactic pathways play contrasting parts in this mechanism; PLA2 and cGMP signal to the cytoskeleton to regulate the splitting process, while PI 3-kinase and soluble guanylyl cyclase mediate the directional bias. The coordinated regulation of pseudopod generation, orientation and persistence by multiple signaling pathways allows eukaryotic cells to detect extremely shallow gradients.  相似文献   

16.
《The Journal of cell biology》1995,129(5):1251-1262
Dictyostelium discoideum initiates development when cells overgrow their bacterial food source and starve. To coordinate development, the cells monitor the extracellular level of a protein, conditioned medium factor (CMF), secreted by starved cells. When a majority of the cells in a given area have starved, as signaled by CMF secretion, the extracellular level of CMF rises above a threshold value and permits aggregation of the starved cells. The cells aggregate using relayed pulses of cAMP as the chemoattractant. Cells in which CMF accumulation has been blocked by antisense do not aggregate except in the presence of exogenous CMF. We find that these cells are viable but do not chemotax towards cAMP. Videomicroscopy indicates that the inability of CMF antisense cells to chemotax is not due to a gross defect in motility, although both video and scanning electron microscopy indicate that CMF increases the frequency of pseudopod formation. The activations of Ca2+ influx, adenylyl cyclase, and guanylyl cyclase in response to a pulse of cAMP are strongly inhibited in cells lacking CMF, but are rescued by as little as 10 s exposure of cells to CMF. The activation of phospholipase C by cAMP is not affected by CMF. Northern blots indicate normal levels of the cAMP receptor mRNA in CMF antisense cells during development, while cAMP binding assays and Scatchard plots indicate that CMF antisense cells contain normal levels of the cAMP receptor. In Dictyostelium, both adenylyl and guanylyl cyclases are activated via G proteins. We find that the interaction of the cAMP receptor with G proteins in vitro is not measurably affected by CMF, whereas the activation of adenylyl cyclase by G proteins requires cells to have been exposed to CMF. CMF thus appears to regulate aggregation by regulating an early step of cAMP signal transduction.  相似文献   

17.
The ability of a cell to detect an external chemical signal and initiate a program of directed migration along a gradient comprises the fundamental process called chemotaxis. Investigations in Dictyostelium discoideum and neutrophils have established that pleckstrin homology (PH) domain-containing proteins that bind to the PI3K products PI(3,4)P2 and PI(3,4,5)P3, such as CRAC (cytosolic regulator of adenylyl cyclase) and Akt/PKB, translocate specifically to the leading edge of chemotaxing cells. CRAC is essential for the chemoattractant-mediated activation of the adenylyl cyclase ACA, which converts ATP into cAMP, the primary chemoattractant for D. discoideum. The mechanisms by which CRAC activates ACA remain to be determined. We now show that in addition to its essential role in the activation of ACA, CRAC is involved in regulating chemotaxis. Through mutagenesis, we show that these two functions are independently regulated downstream of PI3K. A CRAC mutant that has lost the capacity to bind PI3K products does not support chemotaxis and shows minimal ACA activation. Finally, overexpression of CRAC and various CRAC mutants show strong effects on ACA activation with little effect on chemotaxis. These findings establish that chemoattractant-mediated activation of PI3K is important for the CRAC-dependent regulation of both chemotaxis and adenylyl cyclase activation.  相似文献   

18.
Development in Dictyostelium results in the production of a multicellular aggregate. Aggregation depends on chemotaxis to cAMP and cell-to-cell relay of cAMP signalling. The cAMP signalling response involves surface receptor-mediated GTP-dependent activation of adenylate cyclase. Studies of the mutant synag 7 indicate that a soluble protein may be involved in this activation. Wild-type supernatants are required to restore GTP-dependent adenylate cyclase activity to mutant lysates. The surface cAMP receptor which initiates this response and is implicated in chemotaxis has been purified and an antiserum raised. The receptor undergoes a ligand-induced mobility change, probably due to serine phosphorylation, when analyzed by SDS-PAGE. Modulation of this transition is correlated with adaptation of the cells. Analysis of cells at various stages of development indicate that the receptor is most rapidly synthesized in the preaggregation stage. The antiserum was used to clone the cDNA for the receptor. Clones that have been sequenced account for about 33 000 D of the 37 000 D receptor. Hydropathy plots reveal 3 (or 4) potential membrane spanning domains; unsequenced regions are large enough to encode an additional 4 membrane spanning regions. Comparison to bovine rhodopsin reveals homology in those regions elucidated so far. Thirteen potential phosphorylation sites are present in the cytoplasmic domain and may be involved in ligand-induced phosphorylation.  相似文献   

19.
Many biological systems respond to environmental changes by activating intracellular signaling cascades, resulting in an appropriate response. One such system is represented by the social amoeba Dictyostelium discoideum. When food sources become scarce, these unicellular cells can initiate a cAMP-driven multicellular aggregation program to ensure long-term survival. On starvation, the cells secrete conditioned medium factors that initiate cAMP signal transduction by inducing expression of genes such as cAMP receptors and adenylate cyclase. The mechanisms involved in the activation of the first pulses of cAMP release have been unclear. We here show a crucial role for the evolutionarily conserved protein coronin A in the initiation of the cAMP response. On starvation, coronin A–deficient cells failed to up-regulate the expression of cAMP-regulated genes, thereby failing to initiate development, despite a normal prestarvation response. Of importance, external addition of cAMP to coronin A–deficient cells resulted in normal chemotaxis and aggregate formation, thereby restoring the developmental program and suggesting a functional cAMP relay in the absence of coronin A. These results suggest that coronin A is dispensable for cAMP sensing, chemotaxis, and development per se but is part of a signal transduction cascade essential for system initiation leading to multicellular development in Dictyostelium.  相似文献   

20.
A network of interacting proteins has been found that can account for the spontaneous oscillations in adenylyl cyclase activity that are observed in homogenous populations of Dictyostelium cells 4 h after the initiation of development. Previous biochemical assays have shown that when extracellular adenosine 3′,5′-cyclic monophosphate (cAMP) binds to the surface receptor CAR1, adenylyl cyclase and the MAP kinase ERK2 are transiently activated. A rise in the internal concentration of cAMP activates protein kinase A such that it inhibits ERK2 and leads to a loss-of-ligand binding by CAR1. ERK2 phosphorylates the cAMP phosphodiesterase REG A that reduces the internal concentration of cAMP. A secreted phosphodiesterase reduces external cAMP concentrations between pulses. Numerical solutions to a series of nonlinear differential equations describing these activities faithfully account for the observed periodic changes in cAMP. The activity of each of the components is necessary for the network to generate oscillatory behavior; however, the model is robust in that 25-fold changes in the kinetic constants linking the activities have only minor effects on the predicted frequency. Moreover, constant high levels of external cAMP lead to attenuation, whereas a brief pulse of cAMP can advance or delay the phase such that interacting cells become entrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号