首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melittin (ME), a non-cell-selective antimicrobial peptide, contains the leucine zipper motif, wherein every seventh amino acid is leucine or isolucine. Here, we attempted to generate novel cell-selective peptides by substituting amino acids in the leucine zipper sequence of ME with peptoid residues. We generated a series of ME analogues by replacing Leu-6, Lue-13 and Ile-20 with Nala, Nleu, Nphe, or Nlys, and we examined their secondary structure, self-association activity, cell selectivity and mode of action. Circular dichroism spectroscopy indicated that the substitutions disrupt the α-helical structure of ME in micelles of sodium dodecyl sulfate and on negatively charged and zwitterionic phospholipid vesicles. Substitution by Nleu, Nphe, or Nlys but not Nala disturbed the self-association in an aqueous environment, interaction with zwitterionic membranes, and toxicity to mammalian cells of ME but did not affect the interaction with negatively charged membranes or antibacterial activity. Notably, peptides with Nphe or Nlys substitution had the highest therapeutic indices, consistent with their lipid selectivity. In addition, all of peptoid residue-containing ME analogues had little or no ability to induce membrane disruption, membrane depolarization and lipid flip-flop. Taken together, our studies indicate that substitution of the leucine zipper motif in ME with peptoid residues increases its selectivity against bacterial cells by impairing self-association activity and changes its mode of antibacterial action from membrane-targeting mechanism to possible intracellular targeting mechanism. Furthermore, our ME analogues especially those with Nleu, Nphe, or Nlys substitutions, may be therapeutically useful antimicrobial peptides.  相似文献   

2.
Zhu WL  Lan H  Park Y  Yang ST  Kim JI  Park IS  You HJ  Lee JS  Park YS  Kim Y  Hahm KS  Shin SY 《Biochemistry》2006,45(43):13007-13017
To investigate the effect of Pro --> peptoid residue substitution on cell selectivity and the mechanism of antibacterial action of Pro-containing beta-turn antimicrobial peptides, we synthesized tritrpticin-amide (TP, VRRFPWWWPFLRR-NH(2)) and its peptoid residue-substituted peptides in which two Pro residues at positions 5 and 9 are replaced with Nleu (Leu peptoid residue), Nphe (Phe peptoid residue), or Nlys (Lys peptoid residue). Peptides with Pro --> Nphe (TPf) or Pro --> Nleu substitution (TPl) retained antibacterial activity but had significantly higher toxicity to mammalian cells. In contrast, Pro --> Nlys substitution (TPk) increased the antibacterial activity but decreased the toxicity to mammalian cells. Tryptophan fluorescence studies indicated that the bacterial cell selectivity of TPk is closely correlated with a preferential interaction with negatively charged phospholipids. Interestingly, TPk was much less effective at depolarizing of the membrane potential of Staphylococus aureus and Escherichia coli spheroplasts and causing the leakage of a fluorescent dye entrapped within negatively charged vesicles. Furthermore, confocal laser-scanning microscopy showed that TPk effectively penetrated the membrane of both E. coli and S. aureus and accumulated in the cytoplasm, whereas TP and TPf did not penetrate the cell membrane but remained outside or on the cell membrane. These results suggest that the bactericidal action of TPk is due to inhibition of the intracellular components after penetration of the bacterial cell membrane. In addition, TPK with Lys substitution effectively depolarized the membrane potential of S. aureus and E. coli spheroplasts. TPK induced rapid and effective dye leakage from bacterial membrane-mimicking liposomes and did not penetrate the bacterial cell membranes. These results suggested that the ability of TPk to penetrate the bacterial cell membranes appears to involve the dual effects that are related to the increase in the positive charge and the peptide's backbone change by peptoid residue substitution. Collectively, our results showed that Pro --> Nlys substitution in Pro-containing beta-turn antimicrobial peptides is a promising strategy for the design of new short bacterial cell-selective antimicrobial peptides with intracellular mechanisms of action.  相似文献   

3.
Melittin, a naturally occurring antimicrobial peptide, exhibits strong lytic activity against both eukaryotic and prokaryotic cells. Despite a tremendous amount of work done, very little is known about the amino acid sequence, which regulates its toxic activity. With the goal of understanding the basis of toxic activity and poor cell selectivity in melittin, a leucine zipper motif has been identified. To evaluate the possible structural and functional roles of this motif, melittin and its two analogs, after substituting the heptadic leucine by alanine, were synthesized and characterized. Functional studies indicated that alanine substitution in the leucine zipper motif resulted in a drastic reduction of the hemolytic activity of melittin. However, interestingly, both the designed analogs exhibited antibacterial activity comparable to melittin. Mutations caused a significant decrease in the membrane permeability of melittin in zwitterionic but not in negatively charged lipid vesicles. Although both the analogs exhibited similar secondary structures in the presence of negatively charged lipid vesicles as melittin, they failed to adopt a significant helical structure in the presence of zwitterionic lipid vesicles. Results suggest that the substitution of heptadic leucine by alanine impaired the assembly of melittin in an aqueous environment and its localization only in zwitterionic but not in negatively charged membrane. Altogether, the results suggest the identification of a structural element in melittin, which probably plays a prominent role in regulating its toxicity but not antibacterial activity. The results indicate that cell selectivity in some antimicrobial peptides can probably be introduced by modulating their assembly in an aqueous environment.  相似文献   

4.
Tang YC  Deber CM 《Biopolymers》2002,65(4):254-262
Peptoid (N-alkylglycyl) residues in peptides have been studied in a variety of applications, but their behavior in membrane environments has not been systematically investigated. We have synthesized a series of membrane-interactive peptides of prototypic structure KKAAAXAAAAAXAAWAAXAAAKKKK-amide, where X corresponds to the peptoid residues Nala (= sarcosine), Nval, Nile, Nleu, Nphe, and Ntrp. Investigation of their relative hydrophobic character by high-performance liquid chromatography indicated an order of hydrophobicity Ntrp > Nphe > Nleu > Nile > Nval > Nala-largely parallel to the relative scale for these side-chains in natural amino acids, although all values were significantly more "hydrophilic" than their amino acid correspondents. Conformations of peptoid-containing peptides measured by circular dichroism spectroscopy were unordered in the presence of SDS micelles but helical for peptides with X = the corresponding amino acids, suggesting a general helix-breaking tendency for the peptoid residues. However, peptides were able to form helical structures in the solvent n-butanol, indicating that this conformation is possible if peptides became inserted into micellar phases. The latter notion was confirmed by increasing hydrophobic content of the peptides by embedding peptoid Nala residues in Leu-rich rather than Ala-rich sequences, which promoted peptide insertion and helical structure in micelles. The overall results suggest that judicious interspersing of amino acid and peptoid residues in peptide sequences can produce hydrophobic water-soluble materials with membrane-partitioning capacity.  相似文献   

5.
Melittin (ME), a linear 26-residue non-cell-selective antimicrobial peptide, displays strong lytic activity against bacterial and human red blood cells. To design ME analogue with improved cell selectivity, we synthesized a melittin diastereomer (ME-D) with D-amino acid in the leucine zipper sequence (Leu-6, Lue-13 and Ile-20). Compared to ME, ME-D exhibited the same or 2-fold higher antibacterial activity but 8-fold less hemolytic activity. Circular dichroism analysis revealed that ME-D has much less alpha-helical content in alpha-helical content in the presence of zwitterionic EYPC/cholesterol (10 : 1, w/w) liposomes compared to negatively charged EYPE/EYPG (7 : 3, w/w) liposomes. The blue shift of the fluorescence emission maximum of ME-D in zwitterionic EYPC/ cholesterol (10 : 1, w/w) liposomes was much smaller than in negatively charged EYPE/EYPG (7 : 3, w/w) liposomes. These results suggested that the improvement in therapeutic index/cell selectivity of ME-D is correlated with its less permeability to zwitterionic membranes.  相似文献   

6.
Recently, we designed a novel cell-selective antimicrobial peptide (TPk) with intracellular mode of action from Pro --> Nlys (Lys peptoid residue) substitution in a noncell-selective cathelicidin-derived Trp/Pro-rich antimicrobial peptide, tritrpticin-amide (TP; VRRFPWWWPFLRR-NH(2)) (Biochemistry 2006; 45: 13007-13017). In this study, to elucidate the effect of Pro --> Nlys substitution on therapeutic index and mode of action of other noncell-selective cathelicidin-derived Trp/Pro-rich antimicrobial peptides and develop novel short antimicrobial peptides with high cell selectivity/therapeutic index, we synthesized Nlys-substituted antimicrobial peptides, TPk, STPk and INk, in which all proline residues of TP, symmetric TP-analogue (STP; KKFPWWWPFKK-NH(2)) and indolicidin (IN; ILPWKWPWWPWRR-NH(2)) were replaced by Nlys, respectively. Compared to parent Pro-containing peptides (TP, STP and IN), Nlys substituted peptides (TPk, STPk and Ink) had 4- to 26-fold higher cell selectivity/therapeutic index. Parent Pro-containing peptides induced a significant depolarization of the cytoplasmic membrane of intact Staphylococcus aureus at their MIC, whereas Nlys-substituted antimicrobial peptides did not cause visible membrane depolarization at their MIC. These results suggest that the antibacterial action of Nlys-substituted peptides is probably not due to the disruption of bacterial cytoplasmic membranes but the inhibition of intracellular components. Taken together, our results showed that Pro --> Nlys substitution in other noncell-selective Trp/Pro-rich antimicrobial peptides such as STP and IN as well as TP can improve the cell selectivity/therapeutic index and change the mode of antibacterial action from membrane-disrupting to intracellular targeting. In conclusion, our findings suggested that Pro --> Nlys substitution in noncell-selective Trp/Pro-rich antimicrobial peptides is a promising method to develop cell-selective antimicrobial peptides with intracellular target mechanism.  相似文献   

7.
The toxicity of naturally occurring or designed antimicrobial peptides is a major barrier for converting them into drugs. To synthesize antimicrobial peptides with reduced toxicity, several amphipathic peptides were designed based on the leucine zipper sequence. The first one was a leucine zipper peptide (LZP); in others, leucine residues at the a- and/or d-position were substituted with single or double alanine residues. The results showed that LZP and its analogs exhibited appreciable and similar antibacterial activity against the tested gram-positive and gram-negative bacteria. However, the substitution of alanine progressively lowered the toxicity of LZP against human red blood cells (hRBCs). The substitution of leucine with alanine impaired the binding and localization of LZP to hRBCs, but had little effect on the peptide-induced damage of Escherichia coli cells. Although LZP and its analogs exhibited similar permeability, secondary structures, and localization in negatively charged membranes, significant differences were observed among these peptides in zwitterionic membranes. The results suggest a novel approach for designing antibacterial peptides with modulation of toxicity against hRBCs by employing the leucine zipper sequence. Also, to the best of our knowledge, the results demonstrate that this sequence could be utilized to design novel cell-selective molecules for the first time.  相似文献   

8.
To develop antimicrobial peptides having higher bacterial selectivity than a novel antimicrobial peptide P18, we synthesized several analogues. The P18 analogues are designed by movement of the N-terminal Trp2 residue in P18 (P18-W6, P18-W8 and P18-W15) and the substitution of the central Pro9 residue with D-Pro or Nala (P18-Nala9 and P18-D-Pro9). These analogues retained potent antibacterial activity but displayed less hemolytic activity than P18. From the viewpoint of their therapeutic index, P18 analogues had approximate 3- to 7-fold higher bacterial selectivity compared to P18. The analogues preferentially bind to bacterial membrane-mimicking negatively charged liposomes as well as does P18. Their high specificity to negatively charged phospholipids corresponds well with their high bacterial selectivity. Furthermore, P18-W6, P18-W8 and P18-Nala9 induced a significant inhibition in NO production from LPS-stimulated macrophage RAW264.7 cells, as well as P18. This result suggests that these peptides appear to have promising therapeutic potential for future development as a novel anti-inflammatory agent as well as antimicrobial agent.  相似文献   

9.
Song YM  Park Y  Lim SS  Yang ST  Woo ER  Park IS  Lee JS  Kim JI  Hahm KS  Kim Y  Shin SY 《Biochemistry》2005,44(36):12094-12106
To develop a useful method for designing cell-selective antimicrobial peptides and to investigate the effect of incorporating peptoid residues into an alpha-helical model peptide on structure, function, and mode of action, we synthesized a series of model peptides incorporating Nala (Ala-peptoid) into different positions of an amphipathic alpha-helical model peptide (KLW). Incorporation of one or two Nala residues into the hydrophobic helix face of KLW was more effective at disrupting the alpha-helical structure and bacterial cell selectivity than incorporation into the hydrophilic helix face or hydrophobic/hydrophilic interface. Tryptophan fluorescence studies of peptide interaction with model membranes indicated that the cell selectivity of KLW-L9-a and KLW-L9,13-a is closely correlated with their selective interactions with negatively charged phospholipids. KLW-L9,13-a, which has two Nala residues in its hydrophobic helix face, showed a random structure in membrane-mimicking conditions. KLW-L9,13-a exhibited the highest selectivity toward bacterial cells, showing no hemolytic activity and no or less cytotoxicity compared with other peptides against four mammalian cell lines. Unlike other model peptides, KLW-L9,13-a caused no or little membrane depolarization in Staphylococcus aureus or lipid flip-flop in negatively charged vesicles. In addition, KLW-L9,13-a caused very little fluorescent dye leakage from negatively charged vesicles. Furthermore, confocal laser-scanning microscopy and DNA-binding assays showed that KLW-L9,13-a probably exerts its antibacterial action by penetrating the bacterial membrane and binding to cytoplasmic compounds (e.g., DNA), resulting in cell death. Collectively, our results demonstrate that the incorporation of two Nala residues into the central position of the hydrophobic helix face of noncell-selective alpha-helical peptides is a promising strategy for the rational design of intracellular, cell-selective antimicrobial peptides.  相似文献   

10.
Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at ‘a’ and/or ‘d’ position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its ‘a’ and ‘d’ positions with d-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its d-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show significant scope for designing antimicrobial agents with selectivity towards microorganisms by substituting leucine residues at ‘a’ and/or ‘d’ positions of a leucine zipper sequence of an antimicrobial peptide with different amino acids.  相似文献   

11.
A series of linear and monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds, modified by N-(4-aminobutyl)glycine (Nlys) and N-benzylglycine (Nphe), were obtained by the solid-phase method. Some of these peptomers displayed trypsin or chymotrypsin inhibitory activity. In contradiction to the literature data, in most analogues peptide bonds formed by these peptoid monomers were at least partially hydrolyzed by the experimental enzymes at two different pH (3.5 and 8.3). Nevertheless, the replacement of Phe present in the P(1) substrate specificity of linear inactive SFTI-1 analogue with Nphe, yielded a potent chymotrypsin inhibitor. The introduction of one cyclic element (a disulfide bridge or head-to-tail cyclization) to the analogues synthesized significantly increased their proteinase resistance.  相似文献   

12.
Hydrophobic interactions govern specificity for natural antimicrobial peptides. No such relationship has been established for synthetic peptoids that mimic antimicrobial peptides. Peptoid macrocycles synthesized with five different aromatic groups are investigated by minimum inhibitory and hemolytic concentration assays, epifluorescence microscopy, atomic force microscopy, and X-ray reflectivity. Peptoid hydrophobicity is determined using high performance liquid chromatography. Disruption of bacterial but not eukaryotic lipid membranes is demonstrated on the solid supported lipid bilayers and Langmuir monolayers. X-ray reflectivity studies demonstrate that intercalation of peptoids with zwitterionic or negatively charged lipid membranes is found to be regulated by hydrophobicity. Critical levels of peptoid selectivity are demonstrated and found to be modulated by their hydrophobic groups. It is suggested that peptoids may follow different optimization schemes as compared to their natural analogues.  相似文献   

13.
To design melittin (ME) analogues that are not cytotoxic against mammalian cells but which possessing potent antimicrobial activity, we synthesized a ME analogue (ME-w) in which the Trp-19 residue of ME was replaced by a Trp-peptoid residue (Nhtrp). ME-w exhibited similar antimicrobial activity compared to ME against the tested six bacteria and C. albicans. However, it was much less cytotoxic against the hRBCs and HeLa and NIH-3T3 cells than ME. Tryptophan fluorescence and CD spectra revealed that the Trp-19 --> Nhtrp substitution in ME contributed to a much lower helical assembly in an aqueous environment and structural flexibility and exterior localization to zwitterionic membrane which modulates its selectivity toward bacterial cells.  相似文献   

14.
The bee venom antimicrobial peptide, melittin, besides showing versatile activity against microorganisms also neutralizes lipopolysaccharide (LPS)-induced proinflammatory responses in macrophage cells. However, how the amino acid sequence of melittin contributes in its anti-inflammatory properties is mostly unknown. To determine the importance of the leucine zipper sequence of melittin in its neutralization of LPS-induced inflammatory responses in macrophages and interaction with LPS, anti-inflammatory properties of melittin and its three analogues and their interactions with LPS were studied in detail. Two of these analogues, namely melittin Mut-1 (MM-1) and melittin Mut-2 (MM-2), possess leucine to alanine substitutions in the single and double heptadic leucine residue(s) of melittin, respectively, whereas the third analogue is a scrambled peptide (Mel-SCR) that contains the amino acid composition of melittin with minor rearrangement in its leucine zipper sequence. Although MM-1 partly inhibited the production of proinflammatory cytokines in RAW 264.7 and rat primary macrophage cells in the presence of LPS, MM-2 and Mel-SCR were negligibly active. A progressive decrease in interaction of melittin with LPS, aggregation in LPS, and dissociation of LPS aggregates with alteration in the leucine zipper sequence of melittin was observed. Furthermore, with alteration in the leucine zipper sequence of melittin, these analogues failed to exhibit cellular responses associated with neutralization of LPS-induced inflammatory responses in macrophage cells by melittin. The data indicated a probable important role of the leucine zipper sequence of melittin in neutralizing LPS-induced proinflammatory responses in macrophage cells as well as in its interaction with LPS.  相似文献   

15.
16.
Piscidin 1 (Pis-1) is a novel cytotoxic peptide with a cationic α-helical structure isolated from the mast cells of hybrid striped bass. In our previous study, we showed that Pis-1[PG] with a substitution of Pro8 for Gly8 in Pis-1 had higher bacterial cell selectivity than Pis-1. We designed peptoid residue-substituted peptide, Pis-1[NkG], in which Gly8 of Pis-1 was replaced with Nlys (Lys peptoid residue). Pis-1[NkG] had higher antibacterial activity and lower cytotoxicity against mammalian cells than Pis-1 and Pis-1[PG]. We determined the tertiary structure of Pis-1[PG] and Pis-1[NkG] in the presence of DPC micelles by NMR spectroscopy. Both peptides had a three-turn helix in the C-terminal region and a bent structure in the center. Pis-1[PG] has a rigid bent structure at Pro8 whereas Pis-1[NkG] existed as a dynamic equilibrium of two conformers with a flexible hinge structure at Nlys8. Depolarization of the membrane potential of Staphylococcus aureus and confocal laser-scanning microscopy study revealed that Pis-1[NkG] effectively penetrated the bacterial cell membrane and accumulated in the cytoplasm, whereas Pis-1[PG] did not penetrate the membrane but remained outside or on the cell surface. Introduction of a lysine peptoid at position 8 of Pis-1 provided conformational flexibility and increased the positive charge at the hinge region; both factors facilitated penetration of the bacterial cell membrane and conferred bacterial cell selectivity on Pis-1[NkG].  相似文献   

17.
Nek2 is a human cell cycle-regulated kinase that is structurally related to the mitotic regulator, NIMA, of Aspergillus nidulans. Localization studies have shown that Nek2 is a core component of the centrosome, the microtubule organizing center of the cell, and functional approaches suggest a possible role for Nek2 in centrosome separation at the G2/M transition. Here, we have investigated the importance of an unusual leucine zipper coiled-coil motif present in the C-terminal noncatalytic domain of the Nek2 kinase. Glycerol gradient centrifugation indicated that endogenous Nek2 is present in HeLa cells as a salt-resistant 6 S complex, the predicted size of a Nek2 homodimer. Recombinant Nek2 overexpressed in insect cells also formed a 6 S complex, whereas a Nek2 mutant specifically lacking the leucine zipper motif was monomeric. Using yeast two-hybrid interaction analyses and coprecipitation assays, we found that Nek2 can indeed form homodimers both in vivo and in vitro and that this dimerization specifically required the leucine zipper motif. Moreover, deletion of the leucine zipper prevented a trans-autophosphorylation reaction on the C-terminal domain of Nek2 and strongly reduced Nek2 kinase activity on exogenous substrates. Finally, we emphasize that the Nek2 leucine zipper described here differs from classical leucine zippers in that it exhibits a radically different arrangement of hydrophobic and charged amino acids. Thus, this study reveals not only an important mechanism for the regulation of the Nek2 kinase but, furthermore, highlights an unusual organization of a leucine zipper dimerization motif.  相似文献   

18.
Cytotoxicity, a major obstacle in therapeutic application of antimicrobial peptides, is controlled by leucine-zipper-like sequences in melittin and other naturally occurring antimicrobial peptides. Magainin 2 shows significantly lower cytotoxicity than many naturally occurring antimicrobial peptides and lacks this structural element. To investigate the consequences of introducing a leucine zipper sequence in magainin 2, a novel analogue (Mag-mut) was designed by rearranging only the positions of its hydrophobic amino acids to include this structural element. Both magainin 2 and Mag-mut showed appreciable similarities in their secondary structures in the presence of negatively charged lipid vesicles, in localizing and permeabilizing the selected bacteria and exhibiting bactericidal activities. However, Mag-mut bound and localized strongly on to the mammalian cells tested and exhibited significantly higher cytotoxicity than magainin 2. Only Mag-mut, but not magainin 2, permeabilized human red blood cells and zwitterionic lipid vesicles. In contrast with magainin 2, Mag-mut self-assembled in an aqueous environment and bound co-operatively on to zwitterionic lipid vesicles. The peptides formed pores of different sizes on to a selected mammalian cell. The results of the present study indicate an important role of the leucine zipper sequence in the cytotoxicity of Mag-mut and demonstrate that its introduction into a non-toxic peptide, without altering the amino acid composition, can render cytotoxicity.  相似文献   

19.
Peptoids are peptidomimetic polymers that are resistant to proteolysis and less prone to immune responses; thus, they can provide a practical alternative to peptides. Among the various therapeutic applications that have been explored, cationic amphipathic peptoids have demonstrated broad-spectrum antibacterial activity, including activity towards drug-resistant bacterial strains. While their potency and activity spectrum can be manipulated by sequence variations, bacterial selectivity and systemic toxicity need to be improved for further clinical development. To this aim, we incorporated various hydrophobic or cationic residues to improve the selectivity of the previously developed antibacterial peptoid 1. The analogs with hydrophobic residues demonstrated non-specific cytotoxicity, while those with an additional cationic residue showed improved selectivity and comparable antibacterial activity. Specifically, compared to 1, peptoid 7 showed much lower hemolysis and cytotoxicity, while maintaining the antibacterial activity. Therefore, we believe that peptoid 7?has the potential to serve as a promising alternative to current antimicrobial therapies.  相似文献   

20.
Yang ST  Lee JY  Kim HJ  Eu YJ  Shin SY  Hahm KS  Kim JI 《The FEBS journal》2006,273(17):4040-4054
Model amphipathic peptides have been widely used as a tool to determine the structural and biological properties that control the interaction of peptides with membranes. Here, we have focused on the role of a central Pro in membrane-active peptides. To determine the role of Pro in structure, antibiotic activity, and interaction with phospholipids, we generated a series of model amphipathic alpha-helical peptides with different chain lengths and containing or lacking a single central Pro. CD studies showed that Pro-free peptides (PFPs) formed stable alpha-helical structures even in aqueous buffer through self-association, whereas Pro-containing peptides (PCPs) had random coil structures. In contrast, in trifluoroethanol or SDS micelles, both PFPs and PCPs adopted highly ordered alpha-helical structures, although relatively lower helical contents were observed for the PCPs than the PFPs. This structural consequence indicates that a central Pro residue limits the formation of highly helical aggregates in aqueous buffer and causes a partial distortion of the stable alpha-helix in membrane-mimetic environments. With regard to antibiotic activity, PCPs had a 2-8-fold higher antibacterial activity and significantly reduced hemolytic activity compared with PFPs. In membrane depolarization assays, PCPs passed rapidly across the peptidoglycan layer and immediately dissipated the membrane potential in Staphylococcus aureus, whereas PFPs had a greatly reduced ability. Fluorescence studies indicated that, although PFPs had strong binding affinity for both zwitterionic and anionic liposomes, PCPs interacted weakly with zwitterionic liposomes and strongly with anionic liposomes. The selective membrane interaction of PCPs with negatively charged phospholipids may explain their antibacterial selectivity. The difference in mode of action between PCPs and PFPs was further supported by kinetic analysis of surface plasmon resonance data. The possible role of the increased local backbone distortion or flexibility introduced by the proline residue in the antimicrobial mode of action is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号