首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Male-sterile mutants are being studied to deepen our understanding of the complex processes of microsporogenesis and microgametogenesis. Due to difficulties associated with isolating the mutated gene, there is currently very little molecular information on the defects responsible for male sterility. As a first step in utilizing male-sterile mutants to better understand the bio-chemical and molecular processes that control pollen development, we have characterized a number of Arabidopsis thaliana lines that were generated by seed transformation and exhibit male sterility. We report here the identification and characterization of three male-sterile A. thaliana lines, all of which are tagged with T-DNA and show aberrant meiosis. A detailed cytochemical study was conducted on these lines to better understand the timing and nature of each mutation and to investigate how these mutations affect subsequent steps of pollen development. All three mutants undergo apparently normal morphogenesis until the onset of meiosis. In one line (6492) the mutation is most notable at the tetrad stage when up to eight microspores can be seen in each callose-encased tetrad. The resulting mutant microspores are of variable sizes and contain different amounts of DNA. Two other mutants (7219 and 7593) possess many common features, including variable developmental pathways, failure to produce callose, production of vacuolate, coenocytic (multi-nucleate) cells that are surrounded by persistent microsporocyte walls, and asynchronous patterns of development. Unlike the situation in wild-type plants, where developmental stages are correlated with bud length, such correlations are almost impossible with these two mutants. The sporogenous tissue within all three of these mutant lines collapses prior to anthesis.  相似文献   

2.
Isolation of Arabidopsis thaliana mutants hypersensitive to gamma radiation   总被引:4,自引:0,他引:4  
A screening method for mutants of Arabidopsis thaliana hypersensitive to -radiation has been devised. Plants grown from ethyl methanesulfonate (EMS)-treated seeds were irradiated at the seedling stage, which is highly radiosensitive due to extensive cell division. Severe growth inhibition of mutant plants by a -ray dose which only slightly affects wild-type plants was the selective criterion. Twelve true-breeding hyper-sensitive lines were isolated from a total of 3394 screened plants. Genetic analysis of five of the lines revealed five new genes, designated RAD1-RAD5. These Arabidopsis RAD mutants are phenotypically similar to mutants in the RAD52 epistasis group of Saccharomyces cerevisiae, which are highly sensitive to ionizing radiation but not hypersensitive to UV light. One possibility is that the Arabidopsis mutants are defective in a nonhomologous or illegitimate recombination mechanism used by plants for repair of chromosome breaks.  相似文献   

3.
Summary Arrested embryos from lethal (emb) mutants of Arabidopsis thaliana were rescued on a nutrient medium designed to promote plant regeneration from immature wild-type cotyledons. The best response was observed with mutant embryos arrested at the heart to cotyledon stages of development. Embryos arrested at a globular stage produced callus but failed to turn green or form normal shoots in culture. Many of the mutant plants produced in culture were unusually pale with abnormal leaves, rosettes, and patterns of reproductive development. Other plants were phenotypically normal except for the presence of siliques containing 100% aborted seeds following self-pollination. These results demonstrate that genes with essential functions during plant embryo development differ in their pattern of expression at later stages of the life cycle. Most of the 15 genes examined in this study were essential for embryogenesis but were required again for subsequent stages of development. Only EMB24 appeared to be limited in function to embryo development. These differences in the response of mutant embryos in culture may facilitate the classification of embryonic lethals and the identification of genes with developmental rather than housekeeping functions.  相似文献   

4.
Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes.  相似文献   

5.
The time of flowering is regulated by various environmental cues, and in some plant species, it is known to be affected by abiotic stresses. We investigated the effect of nutrient stress caused by an abrupt reduction of mineral nutrition on flowering of Arabidopsis thaliana. We used a hydroponic culture system that enabled us to precisely control nutrient levels. When plants were grown in full-strength nutrient solution for several weeks and then transferred to a diluted medium, the time from sowing to bud appearance was significantly shortened. This acceleration of flowering was more pronounced in short days than in long days, and stronger in the ecotype Landsberg erecta than in Columbia and San Feliu-2. The response was also affected by the age of plants at the beginning of nutrient stress and by the concentration of the diluted medium: earlier treatment and more diluted solutions strengthened the effect. Flowering was affected by nutrient stress, not by a change in the osmotic potential of the medium: addition of mannitol to a 1000-fold diluted solution had no effect on the promotion of flowering. When 3-week-old Landsberg erecta plants were exposed to 1000-fold diluted nutrient solution in an 8-h day length, flower bud appearance was strongly and reproducibly advanced by 10.8–12.8 d compared with control plants (which developed buds 41.1–46.2 d after sowing). This treatment can serve as an optimized protocol for future studies concerning physiological, molecular and ecological aspects of flower induction by nutrient stress in A. thaliana.  相似文献   

6.
Many studies in both animal and plant systems have shown that matrix attachment regions (MARs) can increase the expression of flanking transgenes. However, our previous studies revealed no effect of the chicken lysozyme MARs (chiMARs) on transgene expression in the first generation transgenic Arabidopsis thaliana plants transformed with a β-glucuronidase gene (uidA) unless gene silencing mutants were used as genetic background for transformation. In the present study, we investigated why chiMARs do not influence transgene expression in transgenic wild-type Arabidopsis plants. We first studied the effect of chiMARs on transgene expression in the progeny of primary transformants harboring chiMAR-flanked T-DNAs. Our data indicate that chiMARs do not affect transgene expression in consecutive generations of wild-type A. thaliana plants. Next, we examined whether these observed results in A. thaliana transformants are influenced by the applied transformation method. The results from in vitro transformed A. thaliana plants are in accordance with those from in planta transformed A. thaliana plants and again reveal no influence of chiMARs on transgene expression in A. thaliana wild-type transformants. The effect of chiMARs on transgene expression is also examined in in vitro transformed Nicotiana tabacum plants, but as for A. thaliana, the transgene expression in tobacco transformants is not altered by the presence of chiMARs. Taken together, our results show that the applied method or the plant species used for transformation does not influence whether and how chiMARs have an effect on transgene expression. Finally, we studied the effect of MARs (tabMARs) of plant origin (tobacco) on the transgene expression in A. thaliana wild-type plants and suppressed gene silencing (sgs2) mutants. Our results clearly show that similar to chiMARs, the tobacco-derived MARs do not enhance transgene expression in a wild-type background but can be used to enhance transgene expression in a mutant impaired in gene silencing. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Miguel F.C. De Bolle, Katleen M.J. Butaye Contributed equally to this work  相似文献   

7.
Six different mutations with defects in immature seed development have been identified during screening of a T-DNA collection of Arabidopsis thaliana. The mutations were confirmed to be monogenic and recessive-lethal by genetic analysis. Mutant embryos were blocked in certain steps in the process necessary for embryo viability and development, and therefore they belong to the embryo-lethal class of mutants. The genetic and morphological studies of T-DNA mutations affecting embryo development are presented. The youngest embryos with a defect were observed at the globular stage in the VIII-64 mutation. Externally located cells, precursor of the protoderm, were characterised by abnormal cell division. VIII-41 mutation with a defect at the late globular stage was arrested at the globular-heart stage transition. VIII-111 mutation showed defect at heart stage of embryogenesis with atypical development of cotyledon primordia. The defect was associated with abnormal pattern of cell division constituting the precursor of the shoot apical meristem. In VIII-82 mutation defect in torpedo stage with asymmetric cotyledons was observed. Cotyledon stage of embryos and chlorophyll defect were observed in VIII-75 mutant. Abnormal suspensor consisting of two columns of cells was observed in 280-4-4 mutation. Newly identified embryo-lethals can serve as starting material for more detailed genetic and molecular studies.  相似文献   

8.
Summary Mutants of Arabidopsis thaliana were identified by screening pedigreed M3 seed collections from EMS-treated plants for changes in fatty acid (FA) composition. The FA phenotypes of the most dramatic mutants are as follows: G30 and 1E5 (allelic) lack linolenic acid (183) and are elevated in linoleic acid (182); 4A5 is deficient in 182 and 183 and fourfold increased in oleic acid (181); 9A1 lacks all FAs > C18 and is twofold increased in 181; 1A9 is twofold increased in palmitic acid (160) and decreased by one-half in 181; 2A11 is two-to threefold increased in stearic acid (180) and decreased by one-half in 181. Based on segregation of F2 selfed plants derived from crosses to wild type, all of these phenotypes are the result of single gene mutations.  相似文献   

9.
To facilitate future investigations of glyphosate-resistance mechanisms, three approaches were taken to obtain Arabidopsis thaliana variants that differed in glyphosate response. Recurrent selection by spraying with sub-lethal glyphosate concentrations was performed with Columbia-0 seedlings. After seven cycles of treatment, no resistance was found. A population of 800,000 ethylmethanesulfonate-mutagenized M(2) seedlings was screened on agar containing 0.2mM glyphosate, a lower concentration than that previously used in other studies, and no resistant mutants were recovered. Seventy-two Arabidopsis ecotypes were screened with glyphosate and a range of responses was observed. In a follow-up experiment on a subset of these ecotypes, reduction of seed yield by 11.5 g/ha glyphosate (about 1% the typical field use rate) ranged among ecotypes from 0% to >90%, relative to untreated controls. However, even the least sensitive ecotypes were severely injured by relatively low glyphosate rates. Overall, attempts to select Arabidopsis seedlings that were significantly glyphosate-resistant were unsuccessful and consistent with previous reports. Arabidopsis ecotypes identified with differential glyphosate responses could be used for further studies though the inherently high sensitivity of Arabidopsis to glyphosate could limit their utility in studying glyphosate-resistance mechanisms.  相似文献   

10.
Flavonols are plant metabolites suggested to serve a vital role in fertilization of higher plants. Petunia and maize plants mutated in their flavonol biosynthesis are not able to set seed after self-pollination. We have investigated the role of these compounds in Arabidopsis thaliana. Like in all other plant species, high levels of flavonols could be detected in pollen of wild-type A. thaliana. No flavonols were detected in reproductive organs of the A. thaliana tt4 mutant in which the chs gene is mutated. Surprisingly, this mutant did set seed after self-fertilization and no pollen tube growth aberrations were observed in vivo. The role of flavonols during fertilization of Arabidopsis is discussed.Abbreviations CHS chalcone synthase - TLC thin-layer chromatography  相似文献   

11.
Summary By selecting for germinating seeds in the progeny of mutagen-treated non-germinating gibberellin responsive dwarf mutants of the ga–1 locus in Arabidopsis thaliana, germinating lines (revertants) could be isolated. About half of the revertants were homozygous recessive for a gene (aba), which probably regulates the presence of abscisic acid (ABA). Arguments for the function of this gene were obtained from lines homozygous recessive for this locus only, obtained by selection from the F2 progeny of revertant X wild-type crosses. These lines are characterized by a reduced seed dormancy, symptoms of withering, increased transpiration and a lowered ABA content in developing and ripe seeds and leaves.Abbreviations ABA Abscisic acid - GA4+7 Mixture of gibberellin A4 and A7 - EMS Ethylmethanesulfonate - NG Non-germinating - G Germinating  相似文献   

12.
Summary Seventeen embryo-lethal mutants ofArabidopsis thaliana with lethal phases ranging from the globular to mature cotyledon stages of development were analyzed by culturing arrested embryos on nutrient media designed to promote either callus formation or the completion of embryo development and the recovery of homozygous mutant plants. Enriched media supplemented with vitamins, amino acids, and nucleosides were used to identify potential auxotrophic mutants. Wild-type embryos produced extensive callus on basal and enriched media supplemented with 2,4-D and kinetin. Numerous roots developed when wildtype callus was grown in the presence of NAA and kinetin. Mutant embryos arrested prior to the heart stage of development formed only a slight amount of callus on basal and enriched media. Arrested embryos from mutants 122G-E and 112A-2A reached a later stage of development and gave the most interesting responses in culture. 122G-E mutant embryos failed to grow on basal media but produced extensive callus and homozygous mutant plants on enriched media. The specific nutrient required for growth of this mutant remains to be determined. Arrested embryos from mutant 112A-2A developed into abnormal plants without roots when placed in culture. Mutant callus also failed to form roots on a variety of root-inducing media. Expression of this mutant gene therefore disrupts development of the root apical meristem during both embryogenesis in vivo and organogenesis in vitro.  相似文献   

13.
Summary Chlorate resistant mutants of Arabidopsis thaliana were isolated, of which 10 exhibited a lowered nitrate reductase activity and 51 were chlorate-resistant because of an impaired uptake of chlorate. The 51 mutants of this type are all affected in the same gene. The mutants with a lowered nitrate reductase activity fall into 7 different complementation groups. Three of these mutants grow poorly on media with nitrate as the sole nitrogen source, while the others apparently can reduce sufficient nitrate to bring about growth. In all cases a low nitrate reductase activity coincides with an enhanced nitrite reductase activity. After sucrose gradient centrifugation of wildtype extracts nitrate reductase is found at the 8S position, whereas cytochrome-c reductase is found both at 4 and 8S positions. It is suggested that the functional nitrate reductase is a complex consisting of 4S subunits showing cytochrome-c reductase activity and a Mo-bearing cofactor. All mutants except B25 are capable of assembling the 4S subunits into complexes which for most mutants have a lower S value and exhibit a lower nitrate reductase activity than the wildtype complexes. Since the mutants B25 and B73 exhibit a low xanthine dehydrogenase activity, the Mo-bearing cofactor is probably less available in these mutants than in the wildtype. B73 appears to be the only mutant which is partly repaired by excessive Mo. The possible role of several genes is discussed.  相似文献   

14.
Gene targeting in Arabidopsis thaliana.   总被引:8,自引:0,他引:8  
Summary Gene targeting of a chromosomally integrated transgene in Arabidopsis thaliana is reported. A chimeric gene consisting of the promoter of the 35S RNA of CaMV, the polyadenylation signal of the octopine synthase gene and the coding region of the bacterial hygromycin phosphotransferase gene (hpt), which was rendered non-functional by deletion of 19 bp, was introduced into the genome of A. thaliana using Agrobacterium-mediated gene transfer. A total of 3.46 x 108 protoplasts isolated from 17 independent transgenic Arabidopsis lines harbouring the defective chimeric hpt gene were transformed via direct gene transfer using various DNA forms containing only the intact coding region of the hpt gene. Out of 150 hygromycin-resistant colonies appearing in the course of these experiments, four were the result of targeted recombination of the incoming DNA with the defective chromosomal locus as revealed by PCR and Southern blot analysis. Comparison with the number of transformants obtained when an hpt gene controlled by a promoter and terminator from the nopaline synthase gene was employed results in a maximal ratio of homologous to non-homologous transformation in A. thaliana of 1 x 10–4.  相似文献   

15.
Germ-line transformation of Arabidopsis lasiocarpa   总被引:5,自引:0,他引:5  
In planta transformation methods have opened up the possibility of transforming plant species for which no regeneration protocols currently exist. In this study, the suitability of the germ-line transformation method developed for Arabidopsis thaliana was examined for four taxa in the Brassicaceae that have not been previously transformed: Arabidopsis griffithiana, Arabidopsis lasiocarpa, Arabidopsis petraea and Capsella bursa-pastoris. Numerous transformants were obtained for A. lasiocarpa. Transformation of A. lasiocarpa was confirmed at the phenotypic and molecular levels for stably transformed lines and for backcrossed lines segregating the T-DNA insert. Parameters affecting transformation efficiency of A. lasiocarpa were also explored. As with A. thaliana, sucrose and surfactant in the inoculation medium are required for high levels of transformation, although the suitable concentrations of these are different for A. lasiocarpa. Other components present in earlier versions of the inoculation medium had little effect on transformation efficiency. Vacuum infiltration (rather than simple floral dipping) led to higher rates of transformation and did not seriously affect seed production in A. lasiocarpa. Identification of species susceptible to germ-line transformation will aid in determining the factors important for applying this technology to more recalcitrant species.  相似文献   

16.
Summary We have found that Arahidopsis thaliana is susceptible to infection with a crucifer strain of tobacco mosaic virus (TMV-Cg); the coat protein of TMV-Cg accumulated to a high level in uninoculated rosette leaves several days after inoculation. As a first step in the search for host-coded factors that are involved in virus multiplication, we isolated mutants of A. thaliana in which the accumulation of TMV-Cg coat protein was reduced to low levels. Of 6000 M2 plants descended from ethyl methanesulfonate-treated seeds, two such lines (PD 114 and PD378) were isolated. Genetic analyses suggested that the PD 114 phenotype was caused by a single nuclear recessive mutation, and that PD114 and PD378 belonged to the same complementation group. The coat protein accumulation of a tomato strain of TMV (TMVL) was also reduced in PD 114 plants compared to that in the wild-type plants. In contrast, PD114 plants infected with turnip crinkle or turnip yellow mosaic viruses, which belong to taxonomic groups other than Tobamovirus, expressed similar levels of these coat proteins as did infected wild-type plants.In this paper, we use the term multiplication (of a virus in a plant) to mean a substantial increase in virus concentration in the uninoculated leaves of the infected plant. Therefore, the efficiency of each process of invasion of the plant by the virus, uncoating, replication and degradation of the virus genome, formation and degradation of the virus particles, and spreading of the virus in the plant will affect the degree of multiplication  相似文献   

17.
18.
19.
PCR amplification of cDNA prepared from poly(A)+ RNA from aerial parts of Arabidopsis thaliana, using degenerate nucleotide primers based on conserved regions between the large and small subunits of ADP-glucose pyrophosphorylase (AGP), yielded four different cDNAs of ca. 550 nucleotides each. Based on derived amino acid sequences, the identities between the clones varied from 49 to 69%. Sequence comparison to previously published cDNAs for AGP from various species and tissues has revealed that three of the amplified cDNAs (ApL1, ApL2 and ApL3) correspond to the large subunit of AGP, and one cDNA (ApS) encodes the small subunit of AGP. Both ApL1 and ApS were subsequently found to be present in a cDNA library made from Arabidopsis leaves. All four PCR products are encoded by single genes, as found by genomic Southern analysis.  相似文献   

20.
Floral transition mutants in Arabidopsis   总被引:3,自引:0,他引:3  
An inventory of genetic differences in flowering time in Arabidopsis is presented and discussed. Many genes influence the transition to flowering in a quantitative way. Two groups of mutants and natural variants can be distinguished: those that are responsive to environmental factors and those that are less responsive or unresponsive. It is possible that all late/early-flowering mutants isolated to date carry a mutation with an effect, either promotive or repressive, on a floral repressor. The interaction between light perception and flowering has been studied by analysis of phytochrome- and cryptochrome-deficient mutants, which showed that phyA and probably also cryptochrome have a promotive role in flowering, whereas phyB and other stable phytochromes have an inhibitory role. A circadian rhythm is important in establishing daylength sensitivity, as was shown by the phenotype of the elf 3 mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号