首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A light and electron microscopic examination of the embryonic chick otocyst compared with the otocyst treated with trypsin and Ca- and Mg-free Hanks' solution (HBSS), care being taken not to disrupt or dissociate, has been done. This study was restricted to the “pseudostratified” epithelium in the medioventral portion of the otocyst which develops into the sensory epithelia of the inner ear. It was shown that the pseudostratified epithelium contained groups of epithelial cells with mature intercellular connections composed of an apical junction and an intermediate junction frequently associated with one or more fully formed desmosomes. The cohesive property of the apical junction was demonstrated in the trypsin-treated otocyst; apical junctions remained adherent while desmosomes were altered and the intercellular space of some of the intermediate junctions was increased. The groups of cells contained cells with a cilium and cells undergoing mitosis. The evidence obtained in this study strongly suggested that these groups of cells were undergoing cytodifferentiation and acted as “foci” of cells with the structural competence to respond to stimuli and to participate significantly in the mechanisms involved in the movement, localization and cytodifferentiation of presumptive sensory epithelia of the inner ear.  相似文献   

2.
The liver cell adhesion molecule (L-CAM) and N-cadherin or adherens junction-specific CAM (A-CAM) are structurally related cell surface glycoproteins that mediate calcium-dependent adhesion in different tissues. We have isolated and characterized a full-length cDNA clone for chicken N-cadherin and used this clone to transfect S180 mouse sarcoma cells that do not normally express N-cadherin. The transfected cells (S180cadN cells) expressed N-cadherin on their surfaces and resembled S180 cells transfected with L-CAM (S180L cells) in that at confluence they formed an epithelioid sheet and displayed a large increase in the number of adherens and gap junctions. In addition, N-cadherin in S180cadN cells, like L-CAM in S180L cells, accumulated at cellular boundaries where it was colocalized with cortical actin. In S180L cells and S180cadN cells, L-CAM and N-cadherin were seen at sites of adherens junctions but were not restricted to these areas. Adhesion mediated by either CAM was inhibited by treatment with cytochalasin D that disrupted the actin network of the transfected cells. Despite their known structural similarities, there was no evidence of interaction between L-CAM and N-cadherin. Doubly transfected cells (S180L/cadN) also formed epithelioid sheets. In these cells, both N-cadherin and L-CAM colocalized at areas of cell contact and the presence of antibodies to both CAMs was required to disrupt the sheets of cells. Studies using divalent antibodies to localize each CAM at the cell surface or to perturb their distributions indicated that in the same cell there were no interactions between L-CAM and N-cadherin molecules. These data suggest that the Ca(++)-dependent CAMs are likely to play a critical role in the maintenance of epithelial structures and support a model for the segregation of CAM mediated binding. They also provide further support for the so-called precedence hypothesis that proposes that expression and homophilic binding of CAMs are necessary for formation of junctional structures in epithelia.  相似文献   

3.
T Volk  O Cohen  B Geiger 《Cell》1987,50(6):987-994
Cultured cells from either chicken lens or liver plated on solid substrates form flat epithelial sheets with adherens-type junctions between them. In lens cells these junctions contain A-CAM, while the same type of intercellular junctions in liver cells contain another cell adhesion molecule, L-CAM. Coculturing of lens and liver cells in the same dish resulted in the formation of mixed (heterotypic) adherens junctions. Double immunofluorescent labeling for both A-CAM and L-CAM indicated that the mixed junctions contained both molecules, each of which was present on one of the two partner cells. Moreover, the formation of the heterotypic junctions could be effectively inhibited by both anti-A-CAM and anti-L-CAM antibodies. It has thus been proposed that A-CAM and L-CAM share significant functional homology and may be involved in heterophilic interactions leading to the establishment of molecularly and cellularly asymmetrical adherens-type junctions.  相似文献   

4.
The differentiation of sensory and support cells within the embryonic chick otocyst is accompanied by alterations in the distribution of preexisting intercellular junctions. Prior to innervation of this epithelium, tight, gap and adhering junctions exist between all cells. Upon differentiation of the epithelium, apical bands of tight and adhering junctions are maintained throughout, while gap junctions and desmosomes are found only between support cells. Thus, some of the gap junctions that join homogeneous epithelial cells prior to innervation are removed as sensory cells differentiate, and a separate population of very large gap junctions is formed between differentiating support cells. Morphological evidence suggests two possible mechanisms which may be responsible for the observed changes in gap junctional distribution: removal of gap junctions by internalization, and formation of gap junctions by aggregation of precursor particles. The temporal correlation between junctional modulation, cytological differentiation of sensory and support cells, and ingrowth of nerve fibers makes the latter event a likely developmental cue for differentiation of this epithelium.  相似文献   

5.
Inner ear development requires coordinated transformation of a uniform sheet of cells into a labyrinth with multiple cell types. While numerous regulatory proteins have been shown to play critical roles in this process, the regulatory functions of microRNAs (miRNAs) have not been explored. To demonstrate the importance of miRNAs in inner ear development, we generated conditional Dicer knockout mice by the expression of Cre recombinase in the otic placode at E8.5. Otocyst-derived ganglia exhibit rapid neuron-specific miR-124 depletion by E11.5, degeneration by E12.5, and profound defects in subsequent sensory epithelial innervations by E17.5. However, the small and malformed inner ear at E17.5 exhibits residual and graded hair cell-specific miR-183 expression in the three remaining sensory epithelia (posterior crista, utricle, and cochlea) that closely corresponds to the degree of hair cell and sensory epithelium differentiation, and Fgf10 expression required for morphohistogenesis. The highest miR-183 expression is observed in near-normal hair cells of the posterior crista, whereas the reduced utricular macula demonstrates weak miR-183 expression and develops presumptive hair cells with numerous disorganized microvilli instead of ordered stereocilia. The correlation of differential and delayed depletion of mature miRNAs with the derailment of inner ear development demonstrates that miRNAs are crucial for inner ear neurosensory development and neurosensory-dependent morphogenesis.  相似文献   

6.
7.
The expression of cytokeratin polypeptides in the different epithelia of the developing inner ear of the rat from 12 days post conception to 20 days after birth was analysed immunohistochemically, using a panel of monoclonal antibodies. Throughout the development of the complex epithelial lining of the inner ear originating from the otocyst epithelium, only cytokeratins which are typical of simple epithelia were expressed. Cytokeratins 8, 18, and 19 were detectable shortly after the formation of the otocyst from the ectoderm (12 dpc), whereas cytokeratin 7 expression was delayed and first appeared in the vestibular portion and subsequently in the developing cochlear duct. During the development of the different types of specialized cells, differentiation-dependent modulation of the cytokeratin expression patterns was observed. In the mature inner ear, the specialized cell types displayed a function-related cytokeratin expression profile, both in the cochlear and vestibular portion. Cytokeratin expression in the flat epithelium of the vestibular portion suggests a more complex composition of this epithelium than has been established from routine morphology. Remarkably, the cochlear sensory cells were apparently devoid of cytokeratins, but no final conclusion could be drawn on the presence of cytokeratins in the sensory cells of the vestibular portion, because of the difficulty to delineate the cell borders between sensory cells and supporting cells.  相似文献   

8.
Summary The expression of cytokeratin polypeptides in the different epithelia of the developing inner ear of the rat from 12 days post conception to 20 days after birth was analysed immunohistochemically, using a panel of monoclonal antibodies. Throughout the development of the complex epithelial lining of the inner ear originating from the otocyst epithelium, only cytokeratins which are typical of simple epithelia were expressed. Cytokeratins 8, 18, and 19 were detectable shortly after the formation of the otocyst from the ectoderm (12 dpc), whereas cytokeratin 7 expression was delayed and first appeared in the vestibular portion and subsequently in the developing cochlear duct. During the development of the different types of specialized cells, differentiation-dependent modulation of the cytokeratin expression patterns was observed. In the mature inner ear, the specialized cell types displayed a function-related cytokeratin expression profile, both in the cochlear and vestibular portion. Cytokeratin expression in the flat epithelium of the vestibular portion suggests a more complex composition of this epithelium than has been established from routine morphology. Remarkably, the cochlear sensory cells were apparently devoid of cytokeratins, but no final conclusion could be drawn on the presence of cytokeratins in the sensory cells of the vestibular portion, because of the difficulty to delineate the cell borders between sensory cells and supporting cells.  相似文献   

9.
The present study was designed to characterize the expression and distribution of intermediate filaments (IFs) in the diverse cellular elements of inner-ear epithelium in guinea pig and man. Using immunofluorescence microscopy with a battery of IF-specific monoclonal antibodies, we show that the epithelium of the otocyst expresses cytokeratin (CK) polypeptides typical of simple epithelia. Cells in the early otic ganglion were also positively labelled for cytokeratins, suggesting that they are of otocystic epithelial origin. Cytokeratin distribution was largely homogeneous in the early cochlear duct as the epithelium differentiated, differences in the distribution of cytokeratin between the various cell types became detectable. Characteristically, cochlear hair cells became devoid of cytokeratin labelling, and remained unlabelled with antibodies specific for all other IF classes. The neural tissue of the inner ear was also devoid of cytokeratins and was typically positive for neurofilaments. Vimentin IFs were abundant in the mesenchymal tissues around the membranous labyrinth. Desmin and glial fibrillary acidic protein were not detectable in the cochlea. The apparent absence of all IFs from the cochlear hair cells in both guinea pig and man, as revealed by immunofluorescence and electron microscopy, and the possible significance of their absence for cochlear physiology, are discussed.  相似文献   

10.
Growth factors and other extracellular signals regulate cell division in many tissues. Consequently, growth factors may have therapeutic uses to stimulate the production of replacement sensory hair cells in damaged human inner ears, thereby assisting in alleviating hearing loss and vestibular dysfunction. Assessment of the ability of growth factors to stimulate cell proliferation in inner ear sensory epithelia is at an early stage. This paper provides a brief account of what we know regarding growth factor regulation of cell proliferation in developing and mature inner ear sensory epithelia.  相似文献   

11.
The development and evolution of the inner ear sensory patches and their innervation is reviewed. Recent molecular developmental data suggest that development of these sensory patches is a developmental recapitulation of the evolutionary history. These data suggest that the ear generates multiple, functionally diverse sensory epithelia by dividing a single sensory primordium. Those epithelia will establish distinct identities through the overlapping expression of genes of which only a few are currently known. One of these distinctions is the unique pattern of hair cell polarity. A hypothesis is presented on how the hair cell polarity may relate to the progressive segregation of the six sensory epithelia. Besides being markers for sensory epithelia development, neurotrophins are also expressed in delaminating cells that migrate toward the developing vestibular and cochlear ganglia. These delaminating cells originate from multiple sites at or near the developing sensory epithelia and some also express neuronal markers such as NeuroD. The differential origin of precursors raises the possibility that some sensory neurons acquire positional information before they delaminate the ear. Such an identity of these delaminating sensory neurons may be used both to navigate their dendrites to the area they delaminated from, as well as to help them navigate to their central target. The navigational properties of sensory neurons as well as the acquisition of discrete sensory patch phenotypes implies a much more sophisticated subdivision of the developing otocyst than the few available gene expression studies suggest.  相似文献   

12.
13.
The intestinal lymphoid follicles and associated structures are specialised antigen sampling and inductive sites of the mucosal immune system. The overlying follicle-associated epithelium (FAE) includes the specialised antigen sampling M cells that are also exploited as a route of pathogen invasion. In this immunohistochemical study we analysed the junctional complexes of the mouse intestinal FAE. Protein expression at this site resembled that of other simple epithelia. Specifically, claudin-1/3 and ZO-1 were detected in the tight junctions, E-cadherin, alpha-, beta- and gamma-catenin, vinculin, alpha-actinin and polymerised actin were associated with the adherens junctions and the desmosomes were labelled with a desmosomal protein probe. These markers failed to reveal cell type-associated variations in the tight junctions and desmosomes. In contrast, M cell adherens junctions were distinguished by enhanced expression of beta-catenin, alpha-actinin, polymerised actin and, in some areas, E-cadherin. In addition, M cell junctions exhibited increased expression of intercellular adhesion molecule-1 and phosphotyrosine, and the M cell apical surfaces displayed characteristic patterns of beta-catenin, alpha-actinin and actin expression. We have thus partially defined the junctional complexes of mouse intestinal FAE and identified M cell-specific characteristics that may further explain the biology and function of this unique cell type.  相似文献   

14.
The inner ear develops from a simple ectodermal thickening called the otic placode into a labyrinth of chambers which house sensory organs that sense sound and are used to maintain balance. Although the morphology and function of the sensory organs are well characterized, their origins and lineage relationships are virtually unknown. In this study, we generated a fate map of Xenopus laevis inner ear at otic placode and otocyst stages to determine the developmental origins of the sensory organs. Our lineage analysis shows that all regions of the otic placode and otocyst can give rise to the sensory organs of the inner ear, though there were differences between labeled quadrants in the range of derivatives formed. A given region often gives rise to cells in multiple sensory organs, including cells that apparently dispersed from anterior to posterior poles and vice versa. These results suggest that a single sensory organ arises from cells in different parts of the placode or otocyst and that cell mixing plays a large role in ear development. Time-lapse videomicroscopy provides further evidence that cells from opposite regions of the inner ear mix during the development of the inner ear, and this mixing begins at placode stages. Lastly, bone morphogenetic protein 4 (BMP-4), a member of the transforming growth factor beta (TGF-beta) family, is expressed in all sensory organs of the frog inner ear, as it is in the developing chicken ear. Inner ear fate maps provide a context for interpreting gene expression patterns and embryological manipulations.  相似文献   

15.
All the sensory epithelia of the inner ear in the upside–down catfish (Synodontis nigriventrisDavid) were examined by light microscopy. The morphology of the membranous labyrinth and the orientation of the hair cells is similar to what has been found in other otophysine fishes. The sensory cells are of variable size both inter– and intraepithelially; particularly the macula sacculi is equipped with heterogeneous receptors. Regional differences in the hair cell density are presented for all the otolith organs plus the papilla neglecta. Nerve stainings reveal regional differentiation. The central areas are innervated by stout and stubbly nerve endings intermingled with a few thin nerve fibres while the peripheral parts are reached exclusively by thin axons. In the anterior region of the macula sacculi are found unique cup–shaped axon terminations which surround the basal parts of a single or a few sensory cells. The number and diameter range of the myelinated nerve fibres as well as the hair cell/axon ratio are presented. Electron microscopy demonstrates the presence of unmyelinated axons in all inner ear nerve ramuli.  相似文献   

16.
17.
18.
Atoh1 is required for differentiation of sensory hair cells in the vertebrate inner ear. Moreover, misexpression of Atoh1 is sufficient to establish ectopic sensory epithelia, making Atoh1 a good candidate for gene therapy to restore hearing. However, competence to form sensory epithelia appears to be limited to discrete regions of the inner ear. To better understand the developmental factors influencing sensory-competence, we examined the effects of misexpressing atoh1a in zebrafish embryos under various developmental conditions. Activation of a heat shock-inducible transgene, hs:atoh1a, resulted in ectopic expression of early markers of sensory development within 2 h, and mature hair cells marked by brn3c:GFP began to accumulate 9 h after heat shock. The ability of atoh1a to induce ectopic sensory epithelia was maximal when activated during placodal or early otic vesicle stages but declined rapidly thereafter. At no stage was atoh1a sufficient to induce sensory development in dorsal or lateral non-sensory regions of the otic vesicle. However, co-misexpression of atoh1a with fgf3, fgf8 or sox2, genes normally acting in the same gene network with atoh1a, stimulated sensory development in all regions of the otic vesicle. Thus, expression of fgf3, fgf8 or sox2 strongly enhances competence to respond to Atoh1.  相似文献   

19.
20.
A-CAM (adherens-junction-specific cell adhesion molecule) is a calcium-dependent adhesion molecule which is associated with intercellular adherens junctions in various tissues (Volk & Geiger, 1986, J. Cell Biol. 103, 1441-1450 and 1451-1464). In the present report, we have investigated the distribution of A-CAM during avian morphogenesis by immunofluorescence microscopy and immunoblotting. A-CAM appeared at the onset of gastrulation on developing mesodermal and endodermal cells and was then expressed on tissues derived from the three primary germ layers. During embryonic life, A-CAM was constitutively expressed in a number of tissues including the central and peripheral nervous system, myocardium, muscles, notochord, skin and lens whereas it was found transiently in many tissues ranging from the nephritic tubules and the endoderm of visceral arches to ectodermal placodes. In the adult, in addition to the nervous system, A-CAM was restricted to the skin, lens, heart and testis, and exhibited an apparent molecular weight higher than the one found in the embryo. The prevalence and cell-surface modulation of A-CAM could frequently be correlated with morphogenetic events such as mesenchyme condensation into epithelia or cell clusters (e.g. formation of the somitic epithelium, kidney tubules and peripheral ganglia), dissociation of epithelia (e.g. dissociation of the somitic epithelium and segregation of neural crest from the neural tube), separation of cell populations (e.g. fibroblasts and myotubes in the heart) and reorganizations of epithelia (e.g. neurulation). In addition, using electron microscopy, the expression of A-CAM on the surface of aggregating and separating cells could be correlated with the formation and disappearance of adherens junctions. This precisely scheduled control of A-CAM correlated with early morphogenetic events during embryogenesis suggests that this CAM could play a crucial role in these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号