首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 22 members of the fibroblast growth factor (FGF) family have been implicated in cell proliferation, differentiation, survival, and migration. They are required for both development and maintenance of vertebrates, demonstrating an exquisite pattern of affinities for both protein and proteoglycan receptors. Recent crystal structures have suggested two models for the complex between FGFs, FGF receptors (FGFRs) and the proteoglycan heparan sulphate that mediates signalling, and have provided insight into how FGFs show differing affinities for the range of FGFRs. However, the physiological relevance of the two different models has not been made clear. Here, we demonstrate that the two complexes can be prepared from the same protein components, confirming that neither complex is the product of misfolded protein samples. Analyses of the complexes with mass spectrometry and analytical ultracentrifugation show that the species observed are consistent with the crystal structures formed using the two preparation protocols. This analysis supports the contention that both of the crystal structures reflect the state of the molecules in solution. Mass spectrometry of the complexes suggests that the stoichiometry of the complexes is 2 FGF1:2 FGFR2:1 heparin, regardless of the method used to prepare the complexes. These observations suggest that the two proposed complex architectures may both have relevance to the formation of an in vivo signalling complex, with a combination of the two interactions contributing to the formation of a larger focal complex.  相似文献   

2.
Fibroblast growth factor (FGF) 21, a structural relative of FGF23 that regulates phosphate homeostasis, is a regulator of insulin-independent glucose transport in adipocytes and plays a role in the regulation of body weight. It also regulates ketogenesis and adaptive responses to starvation. We report that in a reconstituted receptor activation assay system using BaF3 cells, which do not endogenously express any type of FGF receptor (FGFR) or heparan sulfate proteoglycan, FGF21 alone does not activate FGFRs and that betaKlotho is required for FGF21 to activate two specific FGFR subtypes: FGFR1c and FGFR3c. Coexpression of betaKlotho and FGFR1c on BaF3 cells enabled FGF21, but not FGF23, to activate receptor signaling. Conversely, coexpression of FGFR1c and Klotho, a protein related to betaKlotho, enabled FGF23 but not FGF21 to activate receptor signaling, indicating that expression of betaKlotho/Klotho confers target cell specificity on FGF21/FGF23. In all of these cases, heparin enhanced the activation but was not essential. In 3T3-L1 adipocytes, up-regulation of glucose transporter (GLUT) expression by FGF21 was associated with expression of betaKlotho, which was absent in undifferentiated 3T3-L1 fibroblasts. It is thus suggested that betaKlotho expression is a crucial determinant of the FGF21 specificity of the target cells upon which it acts in an endocrine fashion.  相似文献   

3.
Fibroblast growth factor-binding protein (FGF-BP) 1 is a secreted protein that can bind fibroblast growth factors (FGFs) 1 and 2. These FGFs are typically stored on heparan sulfate proteoglycans in the extracellular matrix in an inactive form, and it has been proposed that FGF-BP1 functions as a chaperone molecule that can mobilize locally stored FGF and present the growth factor to its tyrosine kinase receptor. FGF-BP1 is up-regulated in squamous cell, colon, and breast cancers and can act as an angiogenic switch during malignant progression of epithelial cells. For the present studies, we focused on FGF-1 and -2 and investigated interactions with recombinant human FGF-BP1 protein as well as effects on signal transduction, cell proliferation, and angiogenesis. We show that recombinant FGF-BP1 specifically binds FGF-2 and that this binding is inhibited by FGF-1, heparan sulfate, and heparinoids. Furthermore, FGF-BP1 enhances FGF-1- and FGF-2-dependent proliferation of NIH-3T3 fibroblasts and FGF-2-induced extracellular signal-regulated kinase 2 phosphorylation. Finally, in the chicken chorioallantoic membrane angiogenesis assay, FGF-BP1 synergizes with exogenously added FGF-2. We conclude that FGF-BP1 binds directly to FGF-1 and FGF-2 and positively modulates the biological activities of these growth factors.  相似文献   

4.
To elucidate roles of fibroblast growth factors (FGF)18 during vertebrate development, we examined expression patterns of Fgf18 in chick embryos and observed effects of FGF18 protein on the Hensen's node, isthmus, and limb buds. Fgf18 is expressed on the right side of the node before the expression of Fgf8 starts. FGF18 protein can induce expression of Fgf8 on the left side of the node, indicating involvement of both FGFs in specification of left-right asymmetry. In the developing brain, Fgf18 is expressed in the isthmus, following the Fgf8 expression. Since Fgf18 is induced ectopically during formation of the second midbrain by FGF8 protein, both FGFs also elaborate midbrain development. In the limb bud, Fgf18 is expressed in the mesenchyme and ectopic application of FGF18 protein inhibits bone growth in the limb. FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans. These results demonstrate that the FGF18-FGF8 signaling is involved in various organizing activities and the signaling hierarchies between FGF18 and FGF8 seem to change during patterning of different structures.  相似文献   

5.
6.
7.
Fibroblast growth factors (FGF) play a critical role in bone growth and development affecting both chondrogenesis and osteogenesis. During the process of intramembranous ossification, which leads to the formation of the flat bones of the skull, unregulated FGF signaling can produce premature suture closure or craniosynostosis and other craniofacial deformities. Indeed, many human craniosynostosis disorders have been linked to activating mutations in FGF receptors (FGFR) 1 and 2, but the precise effects of FGF on the proliferation, maturation and differentiation of the target osteoblastic cells are still unclear. In this report, we studied the effects of FGF treatment on primary murine calvarial osteoblast, and on OB1, a newly established osteoblastic cell line. We show that FGF signaling has a dual effect on osteoblast proliferation and differentiation. FGFs activate the endogenous FGFRs leading to the formation of a Grb2/FRS2/Shp2 complex and activation of MAP kinase. However, immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. When either primary or OB1 osteoblasts are induced to differentiate, FGF signaling inhibits expression of alkaline phosphatase, and blocks mineralization. To study the effect of craniosynostosis-linked mutations in osteoblasts, we introduced FGFR2 carrying either the C342Y (Crouzon syndrome) or the S252W (Apert syndrome) mutation in OB1 cells. Both mutations inhibited differentiation, while dramatically inducing apoptosis. Furthermore, we could also show that overexpression of FGF2 in transgenic mice leads to increased apoptosis in their calvaria. These data provide the first biochemical analysis of FGF signaling in osteoblasts, and show that FGF can act as a cell death inducer with distinct effects in proliferating and differentiating osteoblasts.  相似文献   

8.
Secreted from intestine, human fibroblast growth factor 19 (hFGF19) is an endocrine metabolic regulator that controls bile acid synthesis in the liver. Earlier studies have suggested that hFGF19 at 10-100 nM levels signals through FGF receptor 4 (FGFR4) in the presence of a co-receptor, betaKlotho, but its activity and receptor specificity at physiological concentrations (picomolar levels) remain unclear. Here we report that hFGF19 at picomolar levels require sulfated glycosaminoglycans (sGAGs), such as heparan sulfate, heparin, and chondroitin sulfates, for its signaling via human FGFR4 in the presence of human betaKlotho. Importantly, sGAGs isolated from liver are highly active in enhancing the picomolar hFGF19 signaling. At nanomolar levels, in contrast, hFGF19 activates all types of human FGFRs, i.e. FGFR1c, FGFR2c, FGFR3c, and FGFR4 in the co-presence of betaKlotho and heparin and activates FGFR4 even in the absence of betaKlotho. These results show that sGAGs play crucial roles in specific and sensitive hFGF19 signaling via FGF receptors and suggest that hepatic sGAGs are involved in the highly potent and specific signaling of picomolar hFGF19 through FGFR4 and betaKlotho. The results further suggest that hFGF19 at pathological concentrations may evoke aberrant signaling through various FGF receptors.  相似文献   

9.
Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) has been implicated in the regulation of cell growth and actin rearrangement mediated by several receptor tyrosine kinases, including platelet-derived growth factor and epidermal growth factor. Here we identify the Xenopus laevis homolog of LMW-PTP1 (XLPTP1) as an additional positive regulator in the fibroblast growth factor (FGF) signaling pathway during Xenopus development. XLPTP1 has an expression pattern that displays substantial overlap with FGF receptor 1 (FGFR1) during Xenopus development. Using morpholino antisense technology, we show that inhibition of endogenous XLPTP1 expression dramatically restricts anterior and posterior structure development and inhibits mesoderm formation. In ectodermal explants, loss of XLPTP1 expression dramatically blocks the induction of the early mesoderm gene, Xbrachyury (Xbra), by FGF and partially blocks Xbra induction by Activin. Moreover, FGF-induced activation of mitogen-activated protein (MAP) kinase is also inhibited by XLPTP1 morpholino antisense oligonucleotides; however, introduction of RNA encoding XLPTP1 is able to rescue morphological and biochemical effects of antisense inhibition. Inhibition of FGF-induced MAP kinase activity due to loss of XLPTP1 is also rescued by an active Ras, implying that XLPTP1 may act upstream of or parallel to Ras. Finally, XLPTP1 physically associates only with an activated FGFR1, and this interaction requires the presence of SNT1/FRS-2 (FGFR substrate 2). Although LMW-PTP1 has been shown to participate in other receptor systems, the data presented here also reveal XLPTP1 as a new and important component of the FGF signaling pathway.  相似文献   

10.
Polysialic acid (polySia) is a unique polysaccharide that modifies neural cell adhesion molecule (NCAM) spatiotemporally. Recently, we demonstrated that polySia functions as a reservoir for several neurotrophic factors and neurotransmitters. Here, we showed the direct interaction between polySia and fibroblast growth factor-2 (FGF2) by native-PAGE, gel filtration, and surface plasmon resonance. The minimum chain length of polySia required for the interaction with FGF2 was 17. Compared with heparan sulfate, a well known glycosaminoglycan capable of forming a complex with FGF2, polySia formed a larger complex with distinct properties in facilitating oligomerization of FGF2, as well as in binding to FGF receptors. In polySia-NCAM-expressing NIH-3T3 cells, which were established by transfecting cells with either of the plasmids for the expression of the polysialyltransferases ST8SiaII/STX and ST8SiaIV/PST that can polysialylate NCAM, FGF2-stimulated cell growth, but not cell survival, was inhibited. Taken together, these results suggest that polySia-NCAM might be involved in the regulation of FGF2-FGF receptor signaling through the direct binding of FGF2 in a manner distinct from heparan sulfate.  相似文献   

11.
The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart.  相似文献   

12.
The effects of fibroblast growth factor (FGF) on testicular aromatase activity has been studied using primary cultures of porcine Leydig cells. After culture for 3 days in the absence or presence of FGF, the ability of the cells to produce estrogen was examined in a 4h-test period in which either (a) hCG (10(-9) M) or (b) androstenedione (3 x 10(-6) M) was added to the medium. FGF produced a 3- to 20-fold increase in estrogen formation from endogenous or exogenous substrate during the test period, in spite of a marked decrease (approximately equal to 60%) in [125I]-hCG binding and no significant change in testosterone concentration. Stimulation of estrogen secretion by FGF was dose-(ED50 approximately equal to 2 ng/ml) and time-dependent, the first and maximal effects were observed after 12h and 48h, respectively. Preliminary tests with several other factors (insulin, EGF, TGF-beta, FSH and hCG) showed that hCG alone directly stimulated aromatase activity. From these findings a role is suggested for FGF as a paracrine/autocrine agent in the control of estrogen secretion by Leydig cells.  相似文献   

13.
We have investigated the signaling properties of the fibroblast growth factor (FGF) receptor substrate 3 (FRS3), also known as SNT-2 or FRS2beta, in neurotrophin-dependent differentiation in comparison with the related adapter FRS2 (SNT1 or FRS2alpha). We demonstrate that FRS3 binds all neurotrophin Trk receptor tyrosine kinases and becomes tyrosine phosphorylated in response to NGF, BDNF, NT-3 and FGF stimulation in transfected cells and/or primary cortical neurons. Second, the signaling molecules Grb2 and Shp2 bind FRS3 at consensus sites that are highly conserved among FRS family members and that Shp2, in turn, becomes tyrosine phosphorylated. While FRS3 over-expression in PC12 cells neither increases NGF-induced neuritogenesis nor activation of Map kinase/AKT, comparable to previous reports on FRS2, over-expression of a chimeric adapter containing the PH/PTB domains of the insulin receptor substrate (IRS) 2, in place of the PTB domain of FRS3 (IRS2-FRS3) supports insulin-dependent Map kinase activation and neurite outgrowth in PC12 cells. Collectively, these data demonstrate that FRS3 supports ligand-induced Map kinase activation and that the chimeric IRS2-FRS3 adapter is stimulating sufficient levels of activated MapK to support neurite outgrowth in PC12 cells.  相似文献   

14.
15.
Stroma and the heparin-binding fibroblast growth factor (FGF) family influence normal epithelial cell growth and differentiation in embryonic and adult tissues. The role of stromal cells and the expression of isoforms of the FGF ligand and receptor family were examined during malignant progression of epithelial cells from a differentiated, slowly growing, nonmalignant model rat prostate tumor. In syngeneic hosts, a mixture of stromal and epithelial cells resulted in nonmalignant tumors which were differentiated and slowly growing. In the absence of the stromal cells, epithelial cells progressed to malignant tumors which were independent of the stroma and undifferentiated. The independence of the malignant epithelial cells from stromal cells was accompanied by a switch from exclusive expression of exon IIIb to exclusive expression of exon IIIc in the FGF receptor 2 (FGF-R2) gene. The FGF-R2(IIIb) isoform displays high affinity for stromal cell-derived FGF-7, whereas the FGF-R2(IIIc) isoform does not recognize FGF-7 but has high affinity for the FGF-2 member of the FGF ligand family. The switch from expression of exclusively exon IIIb to exclusively exon IIIc in the resident FGF-R2 gene was followed by activation of the FGF-2 ligand gene, the normally stromal cell FGF-R1 gene, and embryonic FGF-3 and FGF-5 ligand genes in malignant epithelial cells. Multiple autocrine and potentially intracrine ligand-receptor loops resulting from these alterations within the FGF-FGF-R family may underlie the autonomy of malignant tumor cells.  相似文献   

16.
The plasma membrane is not homogeneous but contains specific subcompartments characterized by their unique lipid and protein composition. Based on their enrichment in various signaling molecules, these membrane microdomains are recognized to be sites of localized signal transduction for a number of extracellular stimuli. We have previously shown that fibroblast growth factor-2 (FGF2) induced a specific signaling response within a lipid raft membrane microdomain in human neuroblastoma cells characterized by the tyrosine phosphorylation of a p80 phosphoprotein. Herein, we show that this protein is the signaling adaptor FRS2 and that it is localized exclusively to lipid rafts in vitro and in vivo. We have examined how the tyrosine phosphorylation and serine-threonine phosphorylation of FRS2 within lipid rafts affect the response of cells to FGF2 signaling. Our data suggest that activation of protein kinase C, Src family kinases, and MEK1/2 are involved in regulating serine-threonine phosphorylation of FRS2, which can indirectly affect FRS2 phosphotyrosine levels. We also show that Grb2 is recruited to lipid rafts during signaling events and that activation of MEK1/2 by different mechanisms within lipid rafts may lead to different cellular responses. This work suggests that compartmentalized signaling within lipid rafts may provide a level of specificity for growth factor signaling.  相似文献   

17.
Light scattering technique has been used to study the interaction between fibroblast growth factor (FGF) and its receptor. In this study, a general mathematical model has been developed where the concentration of product formed by the interaction of two proteins and its dependence on the initial concentration of interacting proteins have been determined using laser light scattering. Calculated hydrodynamic diameters reveal that both human fibroblast growth factor (hFGF-1) and its receptor domain (D2 domain) exist as monomers in solution. Titration of hFGF-1 and the D2 domain of FGFR show that they interact in a 1:1 stoichiometry in solution. The binding stoichiometry does not depend on the concentrations of the interacting proteins. The results of this study, for the first time to our knowledge, provide an unambiguous evidence that the 2:2 binary complex of FGF and FGFR observed in the crystal structures of the FGF-FGFR complex (in the absence of heparin) is possibly a crystallization artifact.  相似文献   

18.
Acidic and basic fibroblast growth factors (FGFs) are proteins of 16-18 kDa. Other forms of 25-30 kDa related to this growth factor family have recently been described. All these components bind tightly to heparin-Sepharose, a property that allows the purification of several FGF-related proteins. During the purification of acidic and basic FGFs from bovine pituitary glands, we detected the presence of 28-30 kDa components that are immunoreactive against anti-basic FGF antisera. However, microsequencing analysis revealed that the 28-30 kDa components are lysosomal proteases that co-elute with basic FGF from heparin-Sepharose columns. The involvement of these proteases in the etiology of microheterogenous forms of FGFs and/or release of FGFs from the extracellular matrix is discussed.  相似文献   

19.
Previous studies indicate that astrocytes are the brain cells that express acidic fibroblast growth factor (aFGF) and that the expression is increased upon activation. However, there has been no study investigating the significance of this phenomenon. Here we report that aFGF treatment of IFNγ-stimulated human astrocytes, and LPS/IFNγ-stimulated human microglia, enhances their secretion of inflammatory cytokines and other materials toxic to human neuroblastoma SH-SY5Y cells. The mechanism of aFGF enhancement involves stimulation of the receptor FGFR2 IIIb. We show by RT-PCR that this receptor, but not other FGF receptors, is robustly expressed by astrocytes and microglia. We establish by Western blotting, and immunohistochemistry on postmortem human brain tissue that the FGFR2 IIIb protein is expressed by both of these glial cell types. We blocked the inflammatory stimulant action of aFGF by transfecting microglia and astrocytes with a small inhibitory RNA (siRNA) to FGFR2 IIIb as well as by removal of aFGF using an anti-aFGF antibody. Treatment with bFGF in combination with the stimulants was without effect, but together with aFGF, it partially counteracted the action of aFGF, indicating that it may be a weak antagonist of FGFR2 IIIb. The inflammatory effect was also attenuated by treatment with inhibitors of protein kinase C, Src tyrosine kinase, and MEK-1/2 indicating the involvement of these intracellular pathways. Our data suggest that inhibition of expression or release of aFGF could have therapeutic potential by inhibiting inflammation in neurodegenerative diseases such as Alzheimer disease where many neuroinflammatory molecules are prominently expressed.  相似文献   

20.
Variation in length, disaccharide composition, and sulfation of heparan sulfate (HS) affects fibroblast growth factor (FGF) signaling. However, it is unclear whether the specific distribution of groups within oligosaccharides or random variations in charge density underlies the effects. Recently we showed that a mixture of undersulfated octasaccharides exhibiting 7 and 8 sulfates (7,8-S-OctaF7) generated from heparin had the highest affinity for FGF7 monitored by salt resistance (>0.60 M salt) of octasaccharide-FGF7 complexes. 7,8-S-OctaF7 also had the highest specific activity for formation of a complex with dimeric FGFR2IIIb competent to bind FGF7. Here we show that when endogenous HS was inhibited by chlorate treatment, 7,8-S-OctaF7 specifically supported FGF7-stimulated DNA synthesis and downstream signaling in FGFR2IIIb-expressing mouse keratinocytes. It failed to support FGF1 signaling in both HS-deficient mouse keratinocytes and 3T3 fibroblasts. In contrast, abundant, more highly sulfated and heterogenous mixtures of octasaccharides with lower affinity (0.30-0.60 M salt) for FGF7 supported FGF1-induced signaling in both cell types. In contrast to the two-component 7,8-S-OctaF7 mixture from FGF7, the high affinity octasaccharide fraction from FGF1 was a heterogeneous mixture with components ranging from 8 to 12 sulfates with 11-S-octasaccharides the most abundant. The high affinity fraction exhibited similar properties to the lower affinity fractions from both FGF1 and FGF7. Octasaccharide mixtures eluting from FGF1 between 0.30 and 0.60 M and above 0.60 M salt were nearly equal in support of FGF1 signaling in fibroblasts and keratinocytes. Both were deficient in support of FGF7-induced signaling in keratinocytes. The results show that both variations in overall charge density and specific distribution of charged groups within HS motifs exhibit FGF-specific control over formation of FGF-HS-FGFR complexes and downstream signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号