首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Epithelial cells have apicobasal polarity and an asymmetric junctional complex that provides the bases for development and tissue maintenance. In both vertebrates and invertebrates, the evolutionarily conserved protein complex, PAR-6/aPKC/PAR-3, localizes to the subapical region and plays critical roles in the establishment of a junctional complex and cell polarity. In Drosophila, another set of proteins called tumor suppressors, such as Lgl, which localize separately to the basolateral membrane domain but genetically interact with the subapical proteins, also contribute to the establishment of cell polarity. However, how physically separated proteins interact remains to be clarified. RESULTS: We show that mammalian Lgl competes for PAR-3 in forming an independent complex with PAR-6/aPKC. During cell polarization, mLgl initially colocalizes with PAR-6/aPKC at the cell-cell contact region and is phosphorylated by aPKC, followed by segregation from apical PAR-6/aPKC to the basolateral membrane after cells are polarized. Overexpression studies establish that increased amounts of the mLgl/PAR-6/aPKC complex suppress the formation of epithelial junctions; this contrasts with the previous observation that the complex containing PAR-3 promotes it. CONCLUSIONS: These results indicate that PAR-6/aPKC selectively interacts with either mLgl or PAR-3 under the control of aPKC activity to regulate epithelial cell polarity.  相似文献   

2.
Cell polarity: the ups and downs of the Par6/aPKC complex   总被引:8,自引:0,他引:8  
A signaling complex in which atypical protein kinase C associates with a regulatory protein, Par6, plays an essential role in establishing cell polarity. Recent studies in organisms ranging from worms to mammals have highlighted some of the conserved mechanisms by which the assembly, localization and activity of this complex are regulated. Recent work is also beginning to unravel how this complex acts in concert with additional molecular complexes to establish and maintain polarity.  相似文献   

3.
Regulation of cell polarity is an important biological event that governs diverse cell functions such as localization of embryonic determinants and establishment of tissue and organ architecture. The Rho family GTPases and the polarity complex Par6/Par3/atypical protein kinase C (PKC) play a key role in the signaling pathway, but the molecules that regulate upstream signaling are still not known. Here we identified the guanine nucleotide exchange factor ECT2 as an activator of the polarity complex. ECT2 interacted with Par6 as well as Par3 and PKCzeta. Coexpression of Par6 and ECT2 efficiently activated Cdc42 in vivo. Overexpression of ECT2 also stimulated the PKCzeta activity, whereas dominant-negative ECT2 inhibited the increase in PKCzeta activity stimulated by Par6. ECT2 localization was detected at sites of cell-cell contact as well as in the nucleus of MDCK cells. The expression and localization of ECT2 were regulated by calcium, which is a critical regulator of cell-cell adhesion. Together, these results suggest that ECT2 regulates the polarity complex Par6/Par3/PKCzeta and possibly plays a role in epithelial cell polarity.  相似文献   

4.
PAR (partitioning-defective) proteins, which were first identified in the nematode Caenorhabditis elegans, are essential for asymmetric cell division and polarized growth, whereas Cdc42 mediates establishment of cell polarity. Here we describe an unexpected link between these two systems. We have identified a family of mammalian Par6 proteins that are similar to the C. elegans PDZ-domain protein PAR-6. Par6 forms a complex with Cdc42-GTP, with a human homologue of the multi-PDZ protein PAR-3 and with the regulatory domains of atypical protein kinase C (PKC) proteins. This assembly is implicated in the formation of normal tight junctions at epithelial cell-cell contacts. Thus, Par6 is a key adaptor that links Cdc42 and atypical PKCs to Par3.  相似文献   

5.
Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.  相似文献   

6.
Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH(2)-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization.  相似文献   

7.
The organization of the Golgi apparatus is essential for cell polarization and its maintenance. The polarity regulator PAR complex (PAR3, PAR6, and aPKC) plays critical roles in several processes of cell polarization. However, how the PAR complex participates in regulating the organization of the Golgi remains largely unknown. Here we demonstrate the functional cross-talk of the PAR complex with CLASP2, which is a microtubule plus-end–tracking protein and is involved in organizing the Golgi ribbon. CLASP2 directly interacted with PAR3 and was phosphorylated by aPKC. In epithelial cells, knockdown of either PAR3 or aPKC induced the aberrant accumulation of CLASP2 at the trans-Golgi network (TGN) concomitantly with disruption of the Golgi ribbon organization. The expression of a CLASP2 mutant that inhibited the PAR3-CLASP2 interaction disrupted the organization of the Golgi ribbon. CLASP2 is known to localize to the TGN through its interaction with the TGN protein GCC185. This interaction was inhibited by the aPKC-mediated phosphorylation of CLASP2. Furthermore, the nonphosphorylatable mutant enhanced the colocalization of CLASP2 with GCC185, thereby perturbing the Golgi organization. On the basis of these observations, we propose that PAR3 and aPKC control the organization of the Golgi through CLASP2 phosphorylation.  相似文献   

8.
Epithelial-mesenchymal transition (EMT) is involved in the formation of the body plan, tissue remodeling, and cancer progression. Two recent reports in Science (Barrios-Rodiles et al., 2005; Ozdamar et al., 2005) have decisively advanced our understanding of EMT. Par6 was identified as a key player in the control of tight junction (TJ) stability. This new study provides further insight into the protein networks involved in topologically regulated control of epithelial cell polarity and plasticity.  相似文献   

9.
The mammalian homologs of the C. elegans partitioning-defective (Par) proteins have been demonstrated to be necessary for establishment of cell polarity. In mammalian epithelia, the Par3/Par6/aPKC polarity complex is localized to the tight junction and regulates its formation and positioning with respect to basolateral and apical membrane domains. Here we demonstrate a previously undescribed phosphorylation-dependent interaction between a mammalian homolog of the C. elegans polarity protein Par5, 14-3-3, and the tight junction-associated protein Par3. We identify phosphorylated serine 144 as a site of 14-3-3 binding. Expression of a Par3 mutant that contains serine 144 mutated to alanine (S144A) results in defects in epithelial cell polarity. In addition, overexpression of 14-3-3zeta results in a severe disruption of polarity, whereas overexpression of a 14-3-3 mutant that is defective in binding to phosphoproteins has no effect on cell polarity. Together, these data suggest a novel, phosphorylation-dependent mechanism that regulates the function of the Par3/Par6/aPKC polarity complex through 14-3-3 binding.  相似文献   

10.
Mammalian Par3alpha and Par3beta/Par3L participate in cell polarity establishment and localize to tight junctions of epithelial cells; Par3alpha acts via binding to atypical PKC (aPKC). Here we show that Par3beta as well as Par3alpha interacts with 14-3-3 proteins in a phosphorylation-dependent manner. In the interaction, Ser-746 of Par3beta and the corresponding residue of Par3alpha (Ser-814) likely play a crucial role, since replacement of these residues by unphosphorylatable alanine results in a loss of interacting activity. The mutant Par3 proteins with the replacement are correctly recruited to tight junctions of MDCK cells and to membrane ruffles induced by an active form of the small GTPase Rac in HeLa cells. Thus, the interaction with 14-3-3 appears to be dispensable to Par3 localization. Consistent with this, the Par3alpha-14-3-3 interaction does not inhibit the Par3alpha-aPKC association required for the Par3alpha localization, although the aPKC-binding site lies close to the Ser-814-containing, 14-3-3-interacting region.  相似文献   

11.
Cdc42 is a small GTPase that is required for cell polarity establishment in eukaryotes as diverse as budding yeast and mammals. Par6 is also implicated in metazoan cell polarity establishment and asymmetric cell divisions. Cdc42.GTP interacts with proteins that contain a conserved sequence called a CRIB motif. Uniquely, Par6 possesses a semi-CRIB motif that is not sufficient for binding to Cdc42. An adjacent PDZ domain is also necessary and is required for biological effects of Par6. Here we report the crystal structure of a complex between Cdc42 and the Par6 GTPase-binding domain. The semi-CRIB motif forms a beta-strand that inserts between the four strands of Cdc42 and the three strands of the PDZ domain to form a continuous eight-stranded sheet. Cdc42 induces a conformational change in Par6, detectable by fluorescence resonance energy transfer spectroscopy. Nuclear magnetic resonance studies indicate that the semi-CRIB motif of Par6 is at least partially structured by the PDZ domain. The structure highlights a novel role for a PDZ domain as a structural scaffold.  相似文献   

12.
13.
The animal cell polarity regulator Par-3 recruits the Par complex (consisting of Par-6 and atypical PKC, aPKC) to specific sites on the cell membrane. Although numerous physical interactions have been reported between Par-3 and the Par complex, it is unclear how each of these interactions contributes to the overall binding. Using a purified, intact Par complex and a quantitative binding assay, here, we found that the energy required for this interaction is provided by the second and third PDZ protein interaction domains of Par-3. We show that both Par-3 PDZ domains bind to the PDZ-binding motif of aPKC in the Par complex, with additional binding energy contributed from the adjacent catalytic domain of aPKC. In addition to highlighting the role of Par-3 PDZ domain interactions with the aPKC kinase domain and PDZ-binding motif in stabilizing Par-3–Par complex assembly, our results indicate that each Par-3 molecule can potentially recruit two Par complexes to the membrane during cell polarization. These results provide new insights into the energetic determinants and structural stoichiometry of the Par-3–Par complex assembly.  相似文献   

14.
We have previously shown that interleukin 1 (IL-1)-receptor-generated ceramide induces growth arrest in smooth muscle pericytes by activating an upstream kinase in the stress-activated protein kinase (SAPK) cascade. We now report the mechanism by which ceramide activates the SAPK signaling pathway in human embryonic kidney cells (HEK-293). We demonstrate that ceramide activation of protein kinase C zeta (PKCzeta) mediates SAPK signal complex formation and subsequent growth suppression. Ceramide directly activates both immunoprecipitated and recombinant human PKCzeta in vitro. Additionally, ceramide activates SAPK activity, which is blocked with a dominant-negative mutant of PKCzeta. Co-immunoprecipitation studies reveal that ceramide induces the association of SAPK with PKCzeta, but not with PKCepsilon. In addition, ceramide treatment induces PKCzeta association with phosphorylated SEK and MEKK1, elements of the SAPK signaling complex. The biological role of ceramide to induce cell cycle arrest is mimicked by overexpression of a constitutively active PKCzeta. Together, these studies demonstrate that ceramide induces cell cycle arrest by enhancing the ability of PKCzeta to form a signaling complex with MEKK1, SEK, and SAPK.  相似文献   

15.
Djiane A  Yogev S  Mlodzik M 《Cell》2005,121(4):621-631
Planar cell polarity (PCP) is a common feature of many vertebrate and invertebrate epithelia and is perpendicular to their apical/basal (A/B) polarity axis. While apical localization of PCP determinants such as Frizzled (Fz1) is critical for their function, the link between A/B polarity and PCP is poorly understood. Here, we describe a direct molecular link between A/B determinants and Fz1-mediated PCP establishment in the Drosophila eye. We demonstrate that dPatj binds the cytoplasmic tail of Fz1 and propose that it recruits aPKC, which in turn phosphorylates and inhibits Fz1. Accordingly, components of the aPKC complex and dPatj produce PCP defects in the eye. We also show that during PCP signaling, aPKC and dPatj are downregulated, while Bazooka is upregulated, suggesting an antagonistic effect of Bazooka on dPatj/aPKC. We propose a model whereby the dPatj/aPKC complex regulates PCP by inhibiting Fz1 in cells where it should not be active.  相似文献   

16.
Cellular asymmetry is critical for the development of multicellular organisms. Here we show that homologues of proteins necessary for asymmetric cell division in Caenorhabditis elegans associate with each other in mammalian cells and tissues. mPAR-3 and mPAR-6 exhibit similar expression patterns and subcellular distributions in the CNS and associate through their PDZ (PSD-95/Dlg/ZO-1) domains. mPAR-6 binds to Cdc42/Rac1 GTPases, and mPAR-3 and mPAR-6 bind independently to atypical protein kinase C (aPKC) isoforms. In vitro, mPAR-3 acts as a substrate and an inhibitor of aPKC. We conclude that mPAR-3 and mPAR-6 have a scaffolding function, coordinating the activities of several signalling proteins that are implicated in mammalian cell polarity.  相似文献   

17.
18.
Cell polarity, which directs the orientation of asymmetric cell division and segregation of fate determinants, is a fundamental feature of development and differentiation. Regulators of polarity have been extensively studied, and the critical importance of the Par (partitioning-defective) complex as the polarity machinery is now recognized in a wide range of eukaryotic systems. The Par polarity module is evolutionarily conserved, but its mechanism and cooperating factors vary among different systems. Here we describe the cloning and characterization of a pond snail Lymnaea stagnalis homologue of partitioning-defective 6 (Lspar6). The protein product LsPar6 shows high affinity for microtubules and localizes to the mitotic apparatus during embryonic cell division. In vitro assays revealed direct binding of LsPar6 to tubulin and microtubules, which is the first evidence of the direct interaction between the two proteins. The interaction is mediated by two distinct regions of LsPar6 both located in the N-terminal half. Atypical PKC, a functional partner of Par6, was also found to localize to the mitotic spindle. These results suggest that the L. stagnalis Par complex employs the microtubule network in cell polarity processes during the early embryogenesis. Identical sequence and localization of LsPar6 for the dextral and the sinistral snails exclude the possibility of the gene being the primary determinant of handedness.  相似文献   

19.
Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell-cell contact. When actomyosin is not downregulated at cell-cell contacts, migrating cells lose cohesion. We provide a molecular mechanism for this downregulation. Depletion of discoidin domain receptor 1 (DDR1) blocks collective cancer-cell invasion in a range of two-dimensional, three-dimensional and 'organotypic' models. DDR1 coordinates the Par3/Par6 cell-polarity complex through its carboxy terminus, binding PDZ domains in Par3 and Par6. The DDR1-Par3/Par6 complex controls the localization of RhoE to cell-cell contacts, where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin contactility at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.  相似文献   

20.
Wirtz-Peitz F  Nishimura T  Knoblich JA 《Cell》2008,135(1):161-173
Drosophila neural precursor cells divide asymmetrically by segregating the Numb protein into one of the two daughter cells. Numb is uniformly cortical in interphase but assumes a polarized localization in mitosis. Here, we show that a phosphorylation cascade triggered by the activation of Aurora-A is responsible for the asymmetric localization of Numb in mitosis. Aurora-A phosphorylates Par-6, a regulatory subunit of atypical protein kinase C (aPKC). This activates aPKC, which initially phosphorylates Lethal (2) giant larvae (Lgl), a cytoskeletal protein that binds and inhibits aPKC during interphase. Phosphorylated Lgl is released from aPKC and thereby allows the PDZ domain protein Bazooka to enter the complex. This changes substrate specificity and allows aPKC to phosphorylate Numb and release the protein from one side of the cell cortex. Our data reveal a molecular mechanism for the asymmetric localization of Numb and show how cell polarity can be coupled to cell-cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号