首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Males of Mygalopsis markiBailey (Tettigoniidae: Orthoptera) alter the temporal structure of their song in response to other competing males. The song of males calling in aggregations has a high variance in the number of syllables per chirp, with short intervals between each chirp. In contrast, the temporal pattern of the song of isolated males is more evenly spaced, with an increase in length of the interchirp intervals and low variance in the number of syllables per chirp. In order to simulate a calling male moving closer to a male in an aggregation, a playback technique was adopted whereby the recorded calling song of a male was presented to itself via a loudspeaker in increments of 2dB. The change in song pattern of the resident male involved a reduction in the number of syllables per chirp and an increase in the interchirp interval, with the number of chirps per second remaining constant. This reduction in the output of the song, instead of not calling as a result of an acoustic contest, may still allow males to continue calling for females.  相似文献   

2.
Summary Two ventral-cord neurons in the auditory system ofGryllus bimaculatus were studied electrophysiologically by stimulation with pulses of sound at a single frequency (sine-wave pulses), stridulatory songs, and artificial sounds constructed to imitate the conspecific songs. The sine-wave pulses were varied in frequency, sound intensity, duration, and repetition rate. The stridulatory songs were the conspecific calling, aggressive, and courtship songs and the calling songs of 8 sympatric gryllids (played back at different sound intensities). The artificial songs were varied in carrier frequency, pulse rate, chirp rate, and sound intensity.The LF1 neuron precisely duplicates the temporal structure of the conspecific calling (and aggressive) song over the whole intensity range (Figs. 7, 8, 10). It is sharply tuned to the carrier frequency of the song (5 kHz) and shows little or no response above 10 kHz and below 3 kHz (Figs. 1, 2). By variation of the calling song's temporal structure it can be demonstrated that the LF1 neuron is particularly suited to respond to the pulse duration and the pulse and chirp repetition rates of this song pattern (Figs. 6, 9).On the other hand, the HF1 neuron is a broad-band neuron with a maximal sensitivity at 16 kHz (Figs. 1, 4); it is tuned to the conspecific courtship song with respect to carrier frequency, the short pulse duration, and the very low pulse repetition rate (Figs. 6, 7, 8).The results demonstrate that the two ventral-cord neurons represent highly evolved channels of the auditory pathway in gryllids, each of which transmits important features of the corresponding conspecific songs to several areas of the brain (Fig. 11). But they are not ideal filters for these conspecific songs, since they also respond to many other sound signals (Fig. 10).Supported by the Deutsche Forschungsgemeinschaft as part of the program Sonderforschungsbereich 114 (Bionach), BochumUnder the auspices of the scientist exchange program of the Deutsche Forschungsgemeinschaft and the Academy of Sciences, USSRWe thank Prof. Dr. Schwartzkopff for his help and support; it was due to his initiative and organization that this work could be done in collaboration between the Sechenov Institute, Leningrad, and the Lehrstuhl für Allgemeine Zoologie, Ruhr University, Bochum. We are grateful to Mrs. I. Klotz and Mrs. B. Brücher for technical assistance.  相似文献   

3.
Summary Phonotactic behavior was studied in male crickets,Teleogryllus oceanicus. Tethered flying males were presented with electronically synthesized calling song models in a two-choice phonotaxis assay, and their song preferences were determined and compared with previous findings for females.Males are poorer at discriminating between songs than females; they do not display choice behavior as frequently as females, and the choices they do make are not as consistent as those of females (Figs. 3, 4). T. oceanicus calling song is composed of rhythmically different chirp and trill sections. The selectivity of males for these two components differs from that of females. Females prefer chirp to trill, but the opposite is true for males (Fig. 5B-F). Males are similar to females in that they prefer either a conspecific song model or its separate components to a heterospecific model (Fig. 5A, G, H).Behavioral and neural implications of these findings are discussed.  相似文献   

4.
Abstract. Ventilatory motor patterns were recorded from abdominal muscles in crickets, Gryllus campestris L.and Teleogryllus commodus (Walker), at rest and during three types of stridulatory motor activity; calling, courtship and aggressive song.
Increases in ventilatory period were almost exclusively due to an increase of the pause between expiratory bursts, whereas abdominal ventilatory bursts remained constant at 200 ms.Ventilatory patterns depended on the stridulatory motor pattern and indicated that the same basic respiratory oscillator exists in both cricket species.
In G.campestris there was a strict 1:1 coupling between chirps and ventilatory bursts.In T.commodus such a relationship was also observed for the chirp part of the songs, but less strictly for the trill part of the calling song and not for the courtship song.In both species the onset of the ventilatory burst was within ± 100 ms of a stridulatory chirp.Ventilatory burst lasted longer the earlier they began before a stridulatory chirp.This suggests strongly that the stridulatory motor pattern terminates the expiratory burst, and thus influences the ventilatory motor pattern.  相似文献   

5.
The activity of four types of sound-sensitive descending brain neurons in the cricket Gryllus bimaculatus was recorded intracellularly while animals were standing or walking on an open-loop trackball system. In a neuron with a contralaterally descending axon, the male calling song elicited responses that copied the pulse pattern of the song during standing and walking. The accuracy of pulse copying increased during walking. Neurons with ipsilaterally descending axons responded weakly to sound only during standing. The responses were mainly to the first pulse of each chirp, whereas the complete pulse pattern of a chirp was not copied. During walking the auditory responses were suppressed in these neurons. The spiking activity of all four neuron types was significantly correlated to forward walking velocity, indicating their relevance for walking. Additionally, injection of depolarizing current elicited walking and/or steering in three of four neuron types described. In none of the neurons was the spiking activity both sufficient and necessary to elicit and maintain walking behaviour. Some neurons showed arborisations in the lateral accessory lobes, pointing to the relevance of this brain region for cricket audition and descending motor control.  相似文献   

6.
Summary The activity of auditory receptor cells and prothoracic auditory neurons of the cricket,Gryllus bimaculatus, was recorded intracellularly while the animal walked on a sphere or while passive movement was imposed on a foreleg.During walking the responses to simulated calling song is altered since (i) the auditory sensory cells and interneurons discharged impulses in the absence of sound stimuli (Figs. 1, 3) and (ii) the number of action potentials in response to sound is reduced in interneurons (Figs. 2, 3).These two effects occurred in different phases of the leg movement during walking and therefore masked, suppressed or did not affect the responses to auditory stimuli (Figs. 3, 4). Hence there is a time window within which the calling song can be detected during walking (Fig. 5).The extra excitation of receptors and interneurons is probably produced by vibration of the tympanum because (i) the excitation occurred at the same time as the leg placement (Fig. 4), (ii) during walking on only middle and hindlegs, no extra action potentials were observed (Fig. 6), (iii) in certain phases of passive movements receptor cells and interneurons were excited as long as the ipsilateral ear was not blocked (Figs. 8, 9).Suppression of auditory responses seems to be peripheral as well as central in origin because (i) it occurred at particular phases during active and passive leg movements in receptor cells and interneurons (Figs. 1, 4, 9), (ii) it disappeared if the ear was blocked during passive leg movements (Fig. 9) and (iii) it persisted if the animal walked only on the middle and hind legs (Fig. 6).  相似文献   

7.
Summary Recordings were made from an identified auditory neuron, the omega neuron, in the cricketTeleogryllus oceanicus. Models of the conspecific calling song and of the song of another species were presented either singly or simultaneously, and the degree to which the temporal pattern of the conspecific model was encoded in the neuron's spike train was determined. When a single stimulus was presented alone, its temporal pattern was faithfully reflected by the cells's spiking activity, no matter what the azimuth of the broadcasting loudspeaker (Fig. 3). When two stimuli were presented simultaneously from opposite sides, encoding of the pattern ipsilateral to the recorded neuron was interfered with only slightly by the contralateral pattern, as long as the two loudspeakers were sufficiently separated (Figs. 2, 3, 4). When the loudspeakers were each 15° from the cricket's midline, however, the encoding of the temporal pattern of the ipsilateral song model was severely disrupted (Figs. 3, 4). Bilateral interactions are important in determining the response level of the neuron, but do not appear to contribute to the direction-selective encoding of the stimulus temporal pattern (Figs. 5, 6).Phonotactic steering movements of tethered, flying crickets were recorded under stimulus conditions similar to those used in the neurophysiological tests. Under one-stimulus conditions, crickets attempted to turn towards the conspecific model for all tested speaker locations. The heterospecific model elicited reliable steering behavior when it was broadcast from azimuths of 90° and 60°, but often failed to elicit consistent responses when the speaker was positioned closer to the cricket's midline (Figs. 7, 8A and 8B). Responses to the heterospecific pattern were smaller in amplitude than those to the conspecific song model (Figs. 7, 8B). Under two-stimulus conditions, the conspecific model was consistently preferred over the heterospecific song for all tested speaker locations in half the tested crickets. In the remaining animals, preference for the conspecific pattern was only evident for the larger loudspeaker azimuths (Figs. 7, 8C).These results demonstrate that simultaneouslypresented stimuli can be represented separately in the nervous system as a consequence of auditory directionality. It is postulated that the cricket's ability to choose between these stimuli may result from the interactions between two bilaterallypaired song recognizers, each of which may be driven primarily by sound stimuli from one side.  相似文献   

8.
Alternating antiphasic rhythmic activity was observed in opener and closer mandibular motor neurons in the isolated suboesophageal ganglion of the larva of Manduca sexta (Lepidoptera: Sphingidae). This was interpreted provisionally as fictive chewing; the pattern is similar to that seen in semiintact animals but of lower frequency. Additionally, a variety of associated rhythmic activities were observed in suboesophageal interneurons. These could be classified into several different physiological types by their activity patterns in relation to the chewing cycle. Some of these neurons can modulate the rhythm when injected with current. It seems likely that they are part of or associated with a central pattern generator circuit for chewing.Abbreviations A anterior - CEC circumoesophageal connective - Cl-MN closer motor neuron - IN interneuron - MdN mandibular nerve - MN motor neuron - O-MN opener motor neuron  相似文献   

9.
The motor circuits that control telson flexion in the crayfish (Procambarus clarkii) include a curiously arranged sub-circuit: a premotor 'command' neuron excites a motor neuron via a trisynaptic pathway, but also inhibits (and prevents firing of) the motor neuron via a shorter latency pathway (Kramer et al. 1981 a). The premotor and motor neurons in this circuit have been previously identified (Kramer et al. 1981 a; Dumont and Wine 1985a, b; see Fig. 1). We have now identified a local interneuron that inhibits the motor neurons. The cell we studied is called the 'C' cell because of its distinctive structure (Figs. 2, 3). A single pair of bilaterally homologous C-cells was found in the last (6th) abdominal ganglion. The C-cells are invariably dye coupled to one another following injections of lucifer yellow into either one of them, and are frequently dye coupled to smaller axons in the 2nd, 3rd, and 6th nerves. In addition, some of the extensive branches of the C-cell extend out into the 6th nerve, where they are in close proximity to the axons of the motor neurons they inhibit (Fig. 3). Two kinds of evidence established that the C-cell directly inhibits the motor neurons. First, when simultaneous recordings were made from the C-cell and the motor neurons, spikes in the C-cell, no matter how evoked, were invariably followed, within 1.5 ms, by depolarizing IPSPs in the motor neuron (Fig. 6). Second, when the C-cell was hyperpolarized so that it could not fire, that same IPSP in the motor neuron was abolished (Fig. 6). The inhibitory pathway to the motor neurons must be fired at short latency in order to prevent firing caused by the trisynaptic excitatory input (Fig. 1). The C-cells were fired at short latency (less than 3 ms) by impulses in either of the escape command cells (Fig. 4), and at even shorter latency by impulses in the Segmental Giant of the 6th ganglion (SG6) (Fig. 5). It has been established elsewhere that the SGs are a major output pathway of the escape command cells; our results suggest that they may be the pathway for command-evoked firing of the C-cell. The C-cells are also excited by two descending, non-giant, flexion premotor neurons, called I2 and I3 (Fig. 5). The EPSPs from a single I2 or I3 impulse were subthreshold, but temporal and spatial summation of EPSPs from the non-giant pathway sometimes fired the C-cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
In choosing a breeding partner, females in many animal species select between available males on the basis of several signalling traits. Some theoretical models of signalling evolution predict that multiple ornaments convey specific information on different aspects of male quality, such as current nutritional condition. We investigated the effect of nutrition on the calling song of male field crickets Gryllus campestris. This song is a multicomponent sexually selected signal. Adult males were kept on one of three feeding regimes, which resulted in significant differences in body condition between experimental groups. We found significant increases in calling rate and chirp rate and a significant decrease in interchirp duration with increasing food level. Other song characters, such as chirp duration, syllable number, chirp intensity and carrier frequency, were not affected by the food treatment. Furthermore, carrier frequency was correlated with harp area, which is an index of structural size in adult males. The calling song of the field cricket may thus serve as a multicomponent sexual signal, which contains discrete information on past growth and juvenile development as well as present nutritional condition. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

11.
1. Neurons in the antennal lobe (AL) of the moth Manduca sexta respond to the application, via pressure injection into the neuropil, of acetylcholine (ACh). When synaptic transmission is not blocked, both excitatory (Fig. 2) and inhibitory (Fig. 3) responses are seen. 2. Responses to ACh appear to be receptor-mediated, as they are associated with an increase in input conductance (Figs. 2B and 3B) and are dose-dependent (Fig. 2 C). 3. All neurons responsive to ACh are also excited by nicotine. Responses to nicotine are stronger and more prolonged than responses to ACh (Fig. 4C). No responses are observed to the muscarinic agonist, oxotremorine (Fig. 4 B). 4. Curare blocks responses of AL neurons to applied ACh, while atropine and dexetimide are only weakly effective at reducing ACh responses (Figs. 5 and 6). 5. Curare is also more effective than atropine or dexetimide at reducing synaptically-mediated responses of AL neurons (Fig. 7). 6. In one AL neuron, bicuculline methiodide (BMI) blocked the IPSP produced by electrical stimulation of the antennal nerve, but it did not reduce the inhibitory response to application of ACh (Fig. 8).  相似文献   

12.
Experiments on cats anesthetized with pentobarbital showed that, depending on the intensity and frequency of acoustic stimulation, neurons in auditory area AI give responses of EPSP, EPSP-spike-IPSP, EPSP-IPSP, and IPSP type. Presentation of a tone of characteristic or near-characteristic frequency and above-threshold intensity, and also electrical stimulation of nerve fibers of the spiral ganglion, innervating the central zone of the receptive field of the neuron, evoke in most cases a response of EPSP-spike-IPSP type. Tone differing considerably in frequency from the characteristic, and electrical stimulation of peripheral zones of the receptive field, evoked responses of EPSP-IPSP or IPSP type. The range of frequencies of tones to which, at threshold intensity, an action potential is generated by the neuron is considerably narrower than the range of frequencies of tones evoking an EPSP and IPSP. Above the intensity of tone threshold IPSP is an invariable component of the response of most neurons in area AI. The appearance of an IPSP in the neuron is accompanied by depression of spontaneous activity and the neuronal response to testing stimulation. Two types of IPSP were distinguished: One type is a component of the EPSP-spike-IPSP response and arises during excitation of auditory receptors located in the central part of the receptive field of the neuron, the other arises during excitation of receptors located at the periphery of the field, and which project to neurons with other characteristic frequencies. The former arise after spike excitation of the neuron, the latter after EPSP or primarily.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 123–131, January–February, 1984.  相似文献   

13.
Based on analysis of the temporal dynamics of parameters of the calling song in male crickets Gryllus bimaculatus, a conclusion has been made about the existence of a certain correlation between the number of pulses in chirps, on one hand, and chirp repetition periods and interchirp intervals, on the other hand. It is suggested that this correlation reflects a certain process running in the nervous system of a singing male with variable intensity that depends on both the external and the internal, including genetic, factors.  相似文献   

14.
Phonotaxis in flying crickets   总被引:1,自引:1,他引:0  
The effects of two-tone stimuli on the high frequency bat-avoidance steering behavior of flying crickets (Teleogryllus oceanicus) were studied during tethered flight. Similarly, the effects of two-tone stimuli on the ultrasound sensitive auditory interneuron, Int-1, which elicits this behavior, were studied using intracellular staining and recording techniques. When a low frequency tone (3-8 kHz) was presented simultaneously with an aversive high frequency tone (in a two-tone stimulus paradigm), the high frequency avoidance steering behavior was suppressed. Suppression was optimal when the low frequency tone was between 4 and 5 kHz and about 10-15 dB louder than the high frequency tone (Figs. 2, 3). Best suppression occurred when the low frequency tone-pulse just preceded or overlapped the high frequency tone-pulse, indicating that the suppressive effects of 5 kHz could last for up to 70 ms (Fig. 4). The threshold for avoidance of the bat-like stimulus was elevated when model bat biosonar (30 kHz) was presented while the animal was performing positive phonotaxis toward 5 kHz model calling song, but only if the calling song intensity was relatively high (greater than 70-80 dB SPL) (Fig. 1). However, avoidance steering could always be elicited as long as the calling song was not more than 10 dB louder than the ultrasound (Fig. 1). This suppressive effect did not require performance of positive phonotaxis to the calling song (Fig. 2) and was probably due to the persistence of the suppressive effects of the 5 kHz model calling song (Fig. 4). The requirement for relatively high intensities of calling song suggest that the suppression of bat-avoidance by the calling song is not likely to be of great significance in nature. The high frequency harmonics of the male cricket's natural calling song overlap the lower frequency range used by insectivorous bats (10-20 kHz) and are loud enough to elicit avoidance behavior in a flying female as she closely approaches a singing male (Fig. 5). The high frequency 'harmonics' of a model calling song were aversive even if presented with a normally attractive temporal pattern (pulse repetition rate of 16 pps) (Fig. 6A). When the 5 kHz 'fundamental' was added to one of the high frequency 'harmonics', in a two-tone stimulus paradigm, this complex model calling song was attractive; the high frequency 'harmonic' no longer elicited the avoidance behavior (Fig. 6) and the animals steered toward the model CS. Thus, addition of 5 kHz to a high frequency harmonic of the calling song 'masked' the aversive nature of this stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Summary Motor neurons innervating the dorsal longitudinal muscles of a noctuid moth receive synaptic input activated by auditory stimuli. Each ear of a noctuid moth contains two auditory neurons that are sensitive to ultrasound (Fig. 1). The ears function as bat detectors. Five pairs of large motor neurons and three pairs of small motor neurons found in the pterothoracic ganglia innervate the dorsal longitudinal (depressor) muscles of the mesothorax (Figs. 2 to 5). In non-flying preparations the motor neurons receive no oscillatory synaptic input. Synaptic input to a cell resulting from ultrasonic stimulation is consistent and can be either depolarizing or hyperpolarizing (Figs. 6 to 9). Quiescent neurons only rarely fire a spike in response to auditory inputs. Motor neurons in flying preparations receive oscillatory synaptic drive from the flight pattern generator and usually fire a spike for each wingbeat cycle (Figs. 10 to 12). Ultrasonic stimulation can provide augmented synaptic drive causing a neuron to fire two spikes per wingbeat cycle thus increasing flight vigor (Fig. 11). The same stimulus presented on another occasion can also inhibit spiking in the same motor neuron, but the rhythmic drive remains (Fig. 12). Thus, when the flight oscillator is running auditory stimuli can modulate neuronal responses in different ways depending on some unknown state of the nervous system. Sound intensity is the only stimulus parameter essential for activating the auditory pathway to these motor neurons. The intensity must be sufficient to excite two or three auditory neurons. The significance of these responses in relation to avoidance behavior to bats is discussed.  相似文献   

16.
The steering responses of three species of field crickets, Teleogryllus oceanicus, T. commodus, and Gryllus bimaculatus, were characterized during tethered flight using single tone-pulses (rather than model calling song) presented at carrier frequencies from 3-100 kHz. This range of frequencies encompasses the natural songs of crickets (4-20 kHz, Fig. 1) as well as the echolocation cries of insectivorous bats (12-100 kHz). The single-pulse stimulus paradigm was necessary to assess the aversive nature of high carrier frequencies without introducing complications due to the attractive properties of repeated pulse stimuli such as model calling songs. Unlike the natural calling song, single tone-pulses were not attractive and did not elicit positive phonotactic steering even when presented at the calling song carrier frequency (Figs. 2, 3, and 9). In addition to temporal pattern, phonotactic steering was sensitive to carrier frequency as well as sound intensity. Three discrete flight steering behaviors positive phonotaxis, negative phonotaxis and evasion, were elicited by appropriate combinations of frequency, temporal pattern and sound intensity (Fig. 12). Positive phonotactic steering required a model calling song temporal pattern, was tuned to 5 kHz and was restricted to frequencies below 9 kHz. Negative phonotactic steering, similar to the 'early warning' bat-avoidance behavior of moths, was produced by low intensity (55 dB SPL) tone-pulses at frequencies between 12 and 100 kHz (Figs. 2, 3, and 9). In contrast to model calling song, single tone-pulses of high intensity 5-10 kHz elicited negative phonotactic steering; low intensity ultrasound (20-100 kHz) produced only negative phonotactic steering, regardless of pulse repetition pattern. 'Evasive', side-to-side steering, similar to the 'last-chance' bat-evasion behavior of moths was produced in response to high intensity (greater than 90 dB) ultrasound (20-100 kHz). Since the demonstration of negative phonotactic steering did not require the use of a calling song temporal pattern, avoidance of ultrasound cannot be the result of systematic errors in localizing an inherently attractive stimulus when presented at high carrier frequencies. Unlike attraction to model calling song, the ultrasound-mediated steering responses were of short latency (25-35 ms) and were produced in an open loop manner (Fig. 4), both properties of escape behaviors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Intracellular responses of neurons of the suprasylvian fissure to intracortical stimulation before and during topical cortical strychnine application was studied in experiments on immobilized, unanesthetized cats (a local anesthetic was used). Untreated cortical neurons responded to intracortical stimulation with a monosynaptic excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). Application of strychnine evoked epileptiform population activity and paroxysmal depolarizations of neuronal membrane potentials (MPs), followed by hyperpolarization. Increased hyperpolarizations, and the prolonged duration of their summation were responsible for an increased MP and reduced or abolished tonic spike activity. Intracellular application (as a result of diffusion from the microelectrode) of ethyleneglycoltetraacetate (EGTA) that blocked the calcium-dependent potassium membrane conductance (gK(Ca)) abolished the hyperpolarization. The development of epileptiform activity was accompanied by reduction of the IPSP, and an increase in the monosynaptic EPSP. The role of gK(Ca) and postsynaptic inhibition in epileptogenesis is discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 684–691, November–December, 1992.  相似文献   

18.
Wagner WE  Reiser MG 《Animal behaviour》2000,59(6):1219-1226
Male field crickets produce calling songs, courtship songs, tactile signals and chemical signals. Although calling songs are known to play an important role in female mate choice, the importance of the other signals in mate choice is poorly understood. In the variable field cricket, Gryllus lineaticeps, females select mates, in part, based on variation in male calling song. Females prefer higher chirp rates, a trait which is partially dependent on male nutrient intake, and females prefer longer chirp durations, a trait which appears to be independent of male nutrient intake. We tested whether females also have preferences based on variation in male courtship song, and whether the structure of male courtship song varies with nutrient intake. First, we reexamined female preference for calling song chirp rate. Then, we examined: (1) female preference based on courtship song chirp rate; (2) the relative importance of calling song and courtship song chirp rate; (3) the nutrition dependence of courtship song chirp rate; and (4) the correlation between calling song and courtship song chirp rate. As reported previously, females preferred higher calling song chirp rates, and in addition, preferred higher courtship song chirp rates. Females were more likely to switch from a speaker broadcasting more attractive calling song to a speaker broadcasting less attractive calling song when the attractive calling song was associated with an unattractive courtship song than when it was associated with an attractive courtship song. Preferences based on courtship song may thus cause females to alter the choices that they made based on calling song. Males that received greater nutrients did not produce higher courtship song chirp rates. There was no correlation between calling song and courtship song chirp rate. As a result, the two traits may provide information to females about different aspects of male quality. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

19.
  1. The ontogeny of positive phono taxis (PPT) in female crickets, Gryllus bimaculatus was followed in tethered flight. During the first day of adult life many females already demonstrated PPT to the calling song (CS) of conspecific males. The average threshold of PPT at 5 kHz, the dominant frequency of the CS, decreased by 30 dB by the time of sexual maturity (Fig. 1).
  2. No correlates of this decrease were found in the activity of the most sensitive ascending prothoracic neuron tuned to 5 kHz recorded in the neck connective. This is presumably the AN1 neuron which is known to be involved in PPT realization. Its threshold at 5 kHz in young animals was the same as in adults. Therefore, ascending circuits of PPT seem to be mature by the first day of imago life and there should be some other mechanisms preventing performance of PPT by young walking females until maturation.
  3. The PPT of females in flight is tuned to 5 kHz, much sharper than in walking (Fig. 2). In flight, the carrier frequency of a signal is probably an important parameter driving PPT, at least in a no-choice situation, whereas on the substrate, at close range, temporal parameters become decisive.
  4. The ontogenetic development of the selectivity of a female's PPT to temporal parameters of a signal passes 3 successive steps: 1) response mainly to the trill with pulse repetition rate as in the CS; 2) response mainly to the actual CS with chirp structure; 3) destruction of selectivity (Figs. 3–6). The existence of steps 1 and 2 strengthens our hypothesis, that in phylogeny, the trill (pulse rate) detector of the CS “recognizer” in the CNS appeared earlier, and was later accompanied by the chirp detector.
  5. Joint breeding of female larvae with males accelerates maturation of the CS recognizer.
  相似文献   

20.
Summary This paper reports the results of studies on the neural control of the female's phonotactic response to the calling song of a male cricket, Gryllus campestris L. It deals with the processing of acoustic information contained in the temporal organization of the male's calling song by central auditory neurons. Suction electrodes were used to record the activity of auditory neurons within the intact or within splitted cervical connectives in response to the playback of a natural calling song, or to artificial chirps.Several non-habituating auditory units were repeatedly encountered as a group. These units showed clear, consistent but complex responses to the male's calling song. Individual neurons were identified that responded consistently to either the chirps as a unit (chirp coder) or to the individual pulses within a chirp (pulse coder).Auditory neurons variably responsive to the temporal features of the calling song were also observed, and the most interesting units of this group answered cyclically to the calling song with a period approximating that of the respiratory rate and perhaps that of the slow oscillator suggested by Kutsch (1969) as a timer of the chirp sequences in the male.The results demonstrate that all important temporal features of the calling song in Gryllus campestris L. are coded in the activity of a few central auditory neurons which carry this information to the head ganglia.This research was supported by an U.S.P.H.S. Special Fellowship (MH 1244) and by U.S.P.H.S. Research Grant N.S. 08732 given to J. F. Stout, and it was sponsored by a Nato-Research Grant No. 512, a grant from the Deutsche Forschungsgemeinschaft and, the Stiftung Volkswagenwerk, given to F. Huber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号