首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T helper lymphocytes rescue CTL from activation-induced cell death   总被引:2,自引:0,他引:2  
T cell activation is characterized by a vast expansion of Ag-specific T cells followed by an equally extensive reduction in T cell numbers. This decline is due, in part, to activation-induced apoptosis of the responding T cells during repeated encounter with Ag. In the current study, we used solid-phase MHC class I/peptide monomers to cause activation-induced cell death (AICD) of previously activated CD8 T cells in an Ag-specific manner. AICD occurred rapidly and was mediated primarily by Fas-FasL interactions. Most interestingly, we observed that Th cells could provide survival signals to CTL significantly reducing the level of AICD. Both Th1 and Th2 subsets were capable of protecting CTL from AICD, and a major role for soluble factors in this protection was ruled out, as cell-to-cell contact was an essential component of this Th-mediated protection. Upon encounter with Ag-expressing tumor cells, CTL underwent significant apoptosis. However, in the presence of Th cells, the CTL not only were protected against death, but also had significantly greater lytic ability. In vivo tumor protection studies using peptide immunization showed that the activation of Ag-specific Th cells was crucial for optimal protection, but did not affect the magnitude of the CTL response in the lymphoid tissues. In this study, we examine the type of help that CD4 T cells may provide and propose a model of Th cell-CTL interaction that reduces CTL death. Our results show a novel role for Th cells in the maintenance of CTL responses.  相似文献   

2.
3.
Sepsis induces extensive apoptosis in T and B cells suggesting that the loss of immune effector cells could be one explanation for the profound immunosuppression observed in this disorder. Unfortunately, the mechanisms responsible for lymphocyte apoptosis in sepsis remain unknown. In T cells, apoptosis can occur through activation-induced cell death (AICD) in which engagement of the Ag receptors by cognate Ag or polyclonal activators such as bacteria-derived superantigens induces activation, proliferation, and apoptosis. We examined whether proliferation and AICD are necessary for apoptotic cell death in sepsis using normal and TCR transgenic mice. Results show that although sepsis resulted in activation of a small percentage of T cells, no proliferation was detected during the first 48 h following onset, a time when extensive apoptosis is observed. We also observed that T cells do not enter the cell cycle, and stimulation via the TCR in TCR transgenic animals does not enhance or decrease cell death in sepsis. Interestingly, T cells recovered from septic mice retained their ability to proliferate and synthesize cytokines albeit at reduced levels. With the exception of IL-10, which was increased in lymphocytes from mice with sepsis, sepsis caused a decrease in the production of both proinflammatory and anti-inflammatory cytokines. We conclude that lymphocyte apoptosis in sepsis does not require proliferation, TCR engagement, or AICD. Thus the immunosuppression observed in sepsis cannot be the result of T cell deletion via the TCR.  相似文献   

4.
Activation-induced cell death (AICD), a process mediated by CD95 and CD95 ligand (CD95L), plays a critical role in regulating homeostasis of the immune system. Although the role of sphingolipids such as ceramides has been suggested to participate in CD95-mediated apoptosis, the exact role of these molecules in this process remains controversial. We employed myriocin, a specific inhibitor of serine palmitoyl-CoA transferase that mediates the first commitment step in sphingolipid synthesis. We found that myriocin could effectively block AICD in T-cell hybridomas and T-cell blasts. However, fumonisin B1, an inhibitor of the final step of ceramide synthesis, or inhibitors of sphingomyelinases did not prevent AICD. Furthermore, ceramide analogues, such as C2 and C6, could not reverse the inhibitory effect of myriocin. Interestingly, sphinganine, an intermediate of ceramide synthesis, completely reversed the inhibitory effect of myriocin, indicating a critical role of sphinganine. Myriocin did not modulate the expression of CD95 or CD95L, instead, it interfered with the early steps of CD95-mediated caspase activation. Therefore, we have uncovered a novel mechanism by which sphingolipid intermediates regulate CD95-mediated apoptosis.  相似文献   

5.
One of the mechanisms by which activated T cells die is activation-induced cell death (AICD). This pathway requires persistent stimulation via the TCR and engagement of death receptors. We found that TCR stimulation led to transient nuclear accumulation of the NF-kappaB component p65/RelA. In contrast, nuclear c-Rel levels remained high even after extended periods of activation. Loss of nuclear p65/RelA correlated with the onset of AICD, suggesting that p65/RelA target genes may maintain cell viability. Quantitative RNA analyses showed that three of several putative NF-kappaB-dependent antiapoptotic genes were expressed with kinetics that paralleled nuclear expression of p65/RelA. Of these three, ectopic expression only of Gadd45beta protected significantly against AICD, whereas IEX-1 and Bcl-x(L) were much less effective. We propose that the timing of AICD, and thus the length of the effector phase, are regulated by transient expression of a subset of p65/RelA-dependent antiapoptotic genes.  相似文献   

6.
In common with many other cell types, synovial fibroblasts produce exosomes. In this study, we show that the exosomes produced by synovial fibroblasts obtained from individuals with rheumatoid arthritis (RASF), but not exosomes produced by synovial fibroblasts obtained from individuals with osteoarthritis, contain a membrane bound form of TNF-alpha as demonstrated by colloidal gold immunostaining of TNF-alpha and confirmed by both Western blot and mass spectrometry. The RASF-derived exosomes, but not exosomes derived from fibroblasts obtained from individuals with osteoarthritis, are cytotoxic for the L929 cell, a TNF-alpha-sensitive cell line, and stimulate activation of NF-kappaB and induction of collagenase-1 in RASF. These effects are blocked by addition of soluble TNFR1 (sTNFbp), suggesting that a TNF-alpha-signaling pathway mediates these biological activities. sTNFbp also reduced the production of exosomes by RASF, suggesting the interruption of a positive amplification loop. Exosomes can transmit signals between cells, and RASF exosomes, effectively taken up by anti-CD3-activated T cells, activated AKT and NF-kappaB and rendered these activated T cells resistant to apoptosis. Neutralization of exosomal membrane TNF-alpha by sTNFbp partially reversed this resistance, suggesting that not only TNF-alpha but also additional exosomal proteins may contribute to the development of apoptosis resistance.  相似文献   

7.
Lawrence CP  Chow SC 《FEBS letters》2005,579(28):6465-6472
Activation-induced cell death (AICD) in activated T lymphocytes is largely mediated by Fas/Fas ligand (FasL) interaction. The cytoplasmic adaptor molecule Fas-associated death domain protein (FADD) plays an essential role in the apoptotic signalling of the Fas death pathway. In the present study, we observed that FADD deficient (FADD(-/-)) Jurkat T cells undergo AICD to a similar extent as wild-type cells. AICD in wild-type Jurkat T cells is via apoptosis, whereas it is non-apoptotic in FADD(-/-) cells. The latter took up propidium iodide, exhibit a loss in mitochondrial membrane potential and have no detectable cleavage products of caspase-8 or -3 activation, suggesting that these cells die by necrosis. Wild-type Jurkat T cells undergo apoptosis when incubated with recombinant FasL and Trail but not with TNF-alpha. In contrast, FADD(-/-) Jurkat T cells are resistant to FasL and Trail but die of necrosis when incubated with TNF-alpha. We showed that neutralising anti-TNF-alpha blocked AICD as well as TNF-alpha-induced necrosis in FADD(-/-) Jurkat T cells. Furthermore, down regulating the receptor interacting protein, RIP, with geldanamycin treatment, which is essential for TNF-alpha signalling, markedly inhibited AICD in FADD(-/-) Jurkat T cells. In addition, caspase-8-deficient Jurkat T cells are resistant to Fas- and TNF-alpha-induced cell death. Taken together, our results suggest that a deficiency in FADD and not caspase-8 or the inhibition of the Fas signalling pathway sensitises Jurkat T cells to TNF-alpha-dependent necrosis during AICD.  相似文献   

8.
NKT cells are a versatile population whose immunoregulatory functions are modulated by their microenvironment. We demonstrate herein that in addition to their IFN-gamma production, NKT lymphocytes stimulated with IL-12 plus IL-18 in vitro underwent activation in terms of CD69 expression, blast transformation, and proliferation. Yet they were unable to survive in culture because, once activated, they were rapidly eliminated by apoptosis, even in the presence of their survival factor IL-7. This process was preceded by up-regulation of Fas (CD95) and Fas ligand expression in response to IL-12 plus IL-18 and was blocked by zVAD, a large spectrum caspase inhibitor, as well as by anti-Fas ligand mAb, suggesting the involvement of the Fas pathway. In accordance with this idea, NKT cells from Fas-deficient C57BL/6-lpr/lpr mice did not die in these conditions, although they shared the same features of cell activation as their wild-type counterpart. Activation-induced cell death occurred also after TCR engagement in vivo, since NKT cells became apoptotic after injection of their cognate ligand, alpha-galactosylceramide, in wild-type, but not in Fas-deficient, mice. Taken together, our data provide the first evidence for a new Fas-dependent mechanism allowing the elimination of TCR-dependent or -independent activated NKT cells, which are potentially dangerous to the organism.  相似文献   

9.
10.
Yun HJ  Yoon JH  Lee JK  Noh KT  Yoon KW  Oh SP  Oh HJ  Chae JS  Hwang SG  Kim EH  Maul GG  Lim DS  Choi EJ 《The EMBO journal》2011,30(12):2465-2476
Microglia, the resident macrophages of the mammalian central nervous system, migrate to sites of tissue damage or infection and become activated. Although the persistent secretion of inflammatory mediators by the activated cells contributes to the pathogenesis of various neurological disorders, most activated microglia eventually undergo apoptosis through the process of activation-induced cell death (AICD). The molecular mechanism of AICD, however, has remained unclear. Here, we show that Daxx and mammalian Ste20-like kinase-1 (MST1) mediate apoptosis elicited by interferon-γ (IFN-γ) in microglia. IFN-γ upregulated the expression of Daxx, which in turn mediated the homodimerization, activation, and nuclear translocation of MST1 and apoptosis in microglial cells. Depletion of Daxx or MST1 by RNA interference also attenuated IFN-γ-induced cell death in primary rat microglia. Furthermore, the extent of IFN-γ-induced death of microglia in the brain of MST1-null mice was significantly reduced compared with that apparent in wild-type mice. Our results thus highlight new functions of Daxx and MST1 that they are the key mediators of microglial cell death initiated by the proinflammatory cytokine IFN-γ.  相似文献   

11.
Memory T cells respond in several functionally different ways from naive T cells and thus function as efficient effector cells. In this study we showed that primed T cells were more resistant to Fas-mediated activation-induced cell death (AICD) than naive T cells using OVA-specific TCR transgenic DO10 mice and Fas-deficient DO10 lpr/lpr mice. We found that apoptosis was efficiently induced in activated naive T cells at 48 and 72 h after Ag restimulation (OVA peptide; 0.3 and 3 microM), whereas apoptosis was not significantly increased in activated primed T cells at 24-72 h after Ag restimulation. We further showed that the resistance to AICD in primed T cells was due to the decreased sensitivity to apoptosis induced by Fas-mediated signals, but TCR-mediated signaling equally activated both naive and primed T cells to induce Fas and Fas ligand expressions. Furthermore, we demonstrated that primed T cells expressed higher levels of Fas-associated death domain-like IL-1beta-converting enzyme inhibitory protein (FLIP), an inhibitor of Fas-mediated apoptosis, at 24-48 h after Ag restimulation than naive T cells. In addition, Bcl-2 expression was equally observed between activated naive and primed T cells after Ag restimulation. Thus, these results indicate that naive T cells are sensitive to Fas-mediated AICD and are easily deleted by Ag restimulation, while primed/memory T cells express higher levels of FLIP after Ag restimulation, are resistant to Fas-mediated AICD, and thus function as efficient effector cells for a longer period.  相似文献   

12.
We attempted apoptotic cell death induction of T cells infected with human T lymphotropic virus type I (HTLV-I) which induces HTLV-I-associated myelopathy/tropical spastic paraparesis and adult T cell leukemia. T cells acutely infected and expressing HTLV-Igag Ags were killed by cross-linking their TCR with anti-CD3 mAb. Cells in apoptotic process were found by staining with annexin V. The apoptosis was not affected by costimulation through CD28 molecules and was resistant to ligation of Fas molecules. Whereas the virus-infected T cells expressed higher levels of HLA-DR, CD25, CD80, and CD86 Ags than apoptosis-resistant PHA-blasts, the T cell apoptosis was enhanced by addition of exogenous IL-2. Furthermore, in this apoptosis, monocytes played an important role because T cells infected in the absence of monocytes were resistant to the death signals. The apoptosis-sensitive T cells responded to TCR signaling more strongly by proliferating than those apoptosis-resistant cells. Monocytes weakly affected the expression levels of viral Ags on T cells. However, HTLV-I-infected monocytes primed T cells to die by subsequent TCR signaling. T cells primed with the monocytes, subsequently infected in the absence of monocytes, were killed by TCR signaling. These observations suggest that primed and infected T cells could be killed by activation-induced cell death.  相似文献   

13.
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD.  相似文献   

14.
TCR engagement can induce either T cell proliferation and differentiation or activation-induced T cell death (AICD) through apoptosis. The intracellular signaling pathways that dictate such a disparate fate after TCR engagement have only been partially elucidated. Non-FcR-binding anti-CD3 mAbs induce a partial agonist TCR signaling pattern and cause AICD on Ag-activated, cycling T cells. In this study, we examined TCR signaling during the induction of AICD by anti-CD3 fos, a non-FcR-binding anti-CD3 mAb. This mAb activates Fyn, Lck, and extracellular signal-regulated kinase, and induces phosphorylation of Src-like adapter protein, despite the inability to cause calcium mobilization or TCR polarization. Anti-CD3 fos also fails to effectively activate zeta-associated protein of 70 kDa or NF-kappaB. Using Ag-specific T cells deficient for Fyn or Lck, we provide compelling evidence that activation of Lck is required for the induction of AICD. Our data indicate that a selective and distinct TCR signaling pattern is required for AICD by TCR partial agonist ligands.  相似文献   

15.
16.
Prolyl endopeptidase (PEP) is widely distributed and thought to play an important role in the degradation of peptide hormones and neuropeptides, but its biological role is totally unknown. In this study, we examined PEP activity in subpopulations of murine T cells and found that PEP activity was significantly higher in immature thymocytes than in mature thymocytes or in peripheral T cells. Stimulation of murine peripheral T cells time-dependently increased PEP activity. Although murine T cell hybridomas exhibited high PEP activity, the PEP activity was fully inhibited by treatment with PEP inhibitor. The pretreated T cells were found to be resistant to activation-induced cell death (AICD). Similar results were obtained in murine thymocytes as well as in activated peripheral T cells. PEP activity in T cell hybridomas remained unchanged during AICD. These results suggest that T cells expressing high PEP activity are susceptible to ACID.  相似文献   

17.
18.
Modalities for inducing long-lasting immune responses are essential components of vaccine design. Most currently available immunological adjuvants empirically used for this purpose cause some inflammation, limiting clinical acceptability. We show that pentoxifylline (PF), a phosphodiesterase (PDE) inhibitor in common clinical use, enhances long-term persistence of T cell responses, including protective responses to a bacterial immunogen, Salmonella typhimurium, via a cAMP-dependent protein kinase A-mediated effect on T cells if given to mice for a brief period during immunization. PF inhibits activation-mediated loss of superantigen-reactive CD4 as well as CD8 T cells in vivo without significantly affecting their activation, and inhibits activation-induced death and caspase induction in stimulated CD4 as well as CD8 T cells in vitro without preventing the induction of activation markers. Consistent with this ability to prevent activation-induced death in not only CD4 but also CD8 T cells, PF also enhances the persistence of CD8 T cell responses in vivo. Thus, specific inhibition of activation-induced T cell apoptosis transiently during immune priming is likely to enhance the persistence of CD4 and CD8 T cell responses to vaccination, and pharmacological modulators of the cAMP pathway already in clinical use can be used for this purpose as immunological adjuvants.  相似文献   

19.
Regulation of activation-induced cell death of mature T-lymphocyte populations   总被引:11,自引:0,他引:11  
Resting mature T lymphocytes are activated when triggered via their antigen-specific T-cell receptor (TCR) to elicit an appropriate immune response. In contrast, preactivated T cells may undergo activation-induced cell death (AICD) in response to the same signals. along with cell death induced by growth factor deprivation, AICD followed by the elimination of useless or potentially harmful cells preserves homeostasis, leads to the termination of cellular immune responses and ensures peripheral tolerance. T-cell apoptosis and AICD are controlled by survival cytokines such as interleukin-2 (IL-2) and by death factors such as tumor necrosis factor (TNF) and CD95 ligand (CD95L). In AICD-sensitive T cells, stimulation upregulates expression of one or several death factors, which in turn engage specific death receptors on the same or a neighboring cell. Death receptors are activated by oligomerization to rapidly assemble a number of adapter proteins and enzymes to result in an irreversible activation of proteases and nucleases that culminates in cell death by apoptosis. Increased knowledge of the molecular mechanisms that regulate AICD of lymphocytes opens new immunotherapeutic perspectives for the treatment of certain autoimmune diseases, and has implications in other areas such as transplantation medicine and AIDS research.  相似文献   

20.
Fas-dependent, activation-induced cell death of gammadelta cells.   总被引:1,自引:0,他引:1  
Activated gammadelta T cells undergo apoptosis upon restimulation of their T cell receptor (TCR)/CD3 complex. We demonstrate that in these cells, the activation-induced cell death (AICD) is mediated by Fas and Fas ligand (FasL) interaction. The activated gammadelta T cells are prone to AICD initiated by exposure to mitogens, anti-TCR/CD3 antibodies, as well as specific antigens such as Daudi cells or ethylpyrophosphate (Etpp). Cells that have been activated twice, and consequently more susceptible to AICD than primary cells, display augmented tyrosine phosphorylation in comparison with control cells. These studies outline a mechanism that may regulate gammadelta T cell activities in immune responses and limit the expansion of activated T cells repeatedly exposed to antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号