首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Both Salmonella enterica serovar Typhimurium and Escherichia coli contain the cspH gene encoding CspH, one of the cold shock proteins (CSPs). In this study, we investigated the expression of cspH in S. enterica serovar Typhimurium and found that it was induced in response to a temperature downshift during exponential phase. The cspH promoter was activated at 37 degrees C, and its mRNA was more stable than the other csp mRNAs at 37 degrees C. Moreover, lacZ expression of the translational cspH-lacZ fusion was induced at that temperature. Interestingly, the cspH mRNA had a much shorter 5'-untranslated region than those in the other cold-shock-inducible genes, and the promoter sequence, which was only 55 bp, was sufficient for cspH expression. The 14-base downstream box located 12 bases downstream of the initiation codon of cspH mRNA was essential for its cold shock activation.  相似文献   

5.
Here, two temperature sensitive promoters, P2 and P7, isolated from Bacillus subtilis, were characterized. The production of beta-galactosidase driven by these promoters was much higher at 45 degrees C than that at 37 degrees C both in Escherichia coli and B. subtilis and that the P2 promoter showed higher expression strength in B. subtilis at 45 degrees C. Thereby, an efficient temperature-inducible expression system was constructed by using P2 promoter in B. subtilis. Thus, we isolated and characterized a newly temperature inducible promoter and exploited it as a potential expression element in B. subtilis.  相似文献   

6.
7.
8.
9.
The gene for CspA, the major cold-shock protein of Escherichia coli is known to be dramatically induced upon temperature downshift. Here, we report that three-base substitutions around the Shine–Dalgarno sequence in the 159-base 5'-untranslated region of the cspA mRNA stabilizes the mRNA 150-fold, resulting in constitutive expression of cspA at 37°C. This stabilization was found to be at least partially due to resistance against RNase E degradation. The cold-shock induction of cspA was also achieved by exchanging its promoter with the non-cold-shock lpp promoter. The results presented indicate that the cspA gene is efficiently transcribed even at 37°C. However, the translation of the cspA mRNA is blocked because of its extreme instability at 37°C. The presented results also demonstrate that the cspA gene is constitutively transcribed at all temperatures; however, its expression at 37°C is prevented by destabilizing its mRNA.  相似文献   

10.
The fatty acid desaturase activity in cell extracts of Bacillus subtilis was characterized and found to be O2 dependent, NADH dependent, and cyanide sensitive. In cell fractionation studies, only 10% of the desaturase activity was recovered in the membrane fraction; the addition of cytosolic factors, which by themselves were devoid of activity, restored membrane activity to the level found in the unfractionated cell extracts. NADH was preferred over NADPH as an electron donor, and palmitoyl-coenzyme A was used preferentially over stearoyl-coenzyme A as the straight-chain fatty acid substrate. An increase in desaturase activity was observed when either the growth or the assay temperature was lowered from 37 to 20 degrees C, although the assay temperature appeared to be the more important parameter. Three protonophore-resistant mutants of B. subtilis and a comparable mutant of Bacillus megaterium had been found to possess reduced levels of unsaturated fatty acids in their membrane phospholipids; their protonophore resistance was abolished when grown in the presence of an unsaturated fatty acid supplement. All of these strains were found to be either significantly deficient in or totally lacking desaturase activity in comparison with their wild-type parent strains. Full, protonophore-sensitive revertants of the mutants had levels of desaturase activity comparable to those of the wild-type. Temperature-sensitive revertants of two of the mutants, which grew at 32 degrees C but not at 26 degrees C in the presence of protonophore, exhibited desaturase activity comparable to that of the wild-type at 26 degrees C but lacked activity at 32 degrees C. These results indicate that the biochemical basis for protonophore resistance in these Bacillus mutants is a fatty acid desaturase deficiency.  相似文献   

11.
12.
13.
14.
Transcriptional analyses of the Bacillus licheniformis penP gene   总被引:9,自引:1,他引:8       下载免费PDF全文
  相似文献   

15.
A Schmid  K D Fascher  W H?rz 《Cell》1992,71(5):853-864
Activation of the PHO5 gene in S. cerevisiae by phosphate starvation was previously shown to be accompanied by the disappearance of four positioned nucleosomes from the promoter. To investigate the mechanism, we replaced the PHO80 gene, a negative regulator of PHO5, by a temperature-sensitive allele. As a consequence, PHO5 can be activated in the presence of phosphate by a temperature shift from 24 degrees C to 37 degrees C. Under these conditions, the promoter undergoes the same chromatin transition as in phosphate-starved cells. Disruption of the nucleosomes by the temperature shift also occurs when DNA replication is prevented. Nucleosomes re-form when the temperature is shifted from 37 degrees C back to 24 degrees C in nondividing cells. Glucose is required for the disruption of the nucleosomes during the temperature upshift, not for their re-formation during the temperature downshift. These experiments prove that DNA replication is not required for the transition between the nucleosomal and the non-nucleosomal state at the PHO5 promoter.  相似文献   

16.
J Andersen  N Delihas 《Biochemistry》1990,29(39):9249-9256
  相似文献   

17.
In our attempt to understand the cold shock response of Bacillus subtilis, we report on the role of the B. subtilis fatty acid desaturase (FA-D) Des during membrane adaptation to low temperatures and demonstrate its importance during cold shock. A des null mutant was constructed and analysed in comparison with its parental strain. Growth studies and large-scale comparative fatty acid (FA) analysis revealed a severe cold-sensitive phenotype of the des deletion mutant during the absence of isoleucine and showed that four unsaturated fatty acid (UFA) species differing in length, branching pattern and position of the double bond are synthesized in B. subtilis JH642 but not in the des null mutant. Apart from the lack of UFA synthesis, the FA-D deletion strain showed a dramatically altered saturated fatty acid (SFA) profile at the onset of the stationary growth phase in the presence of exogenous isoleucine sources. Expression of des integrated in trans at the amyE locus of the des deletion strain not only cured the cold-sensitive phenotype observed for the des mutant but allowed much better growth than in strain JH642 after a shift from 37 degrees C to 15 degrees C. These results show that, during cold shock adaptation, des expression can completely replace the isoleucine-dependent, long-term, FA branching adaptation mechanism. We conclude that the crucial aspect in cold adaptation of the cytoplasmic membrane is not its specific molecular composition but rather its physical status in terms of its fluidity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号