首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
More ribosomal spacer sequences from Xenopus laevis.   总被引:25,自引:17,他引:8       下载免费PDF全文
The base sequence analysis of a Xenopus laevis ribosomal DNA repeat (7) has been extended to cover almost the entire non-transcribed and external transcribed spacer. A compilation of these sequences is presented. All the repetitive and non-repetitive sequence elements of the spacer are identified and their evolution discussed. Comparison of the X.laevis and S.cerevisiae (25,26) ribosomal DNAs shows about 80% sequence conservation in the 18S gene but no sequence conservation, from the available data, in the external transcribed spacer. The sequence coding for the 3' terminus of the X.laevis 40S ribosomal precursor RNA is presented and its structural features analyzed.  相似文献   

3.
Hybridization of purified, 32p-labeled 5.8S ribosomal RNA from Xenopus laevis to fragments generated from X. laevis rDNA by the restriction endonuclease, EcoRI, demonstrates that the 5.8S rRNA cistron lies within the transcribed region that links the 18S and 28S rRNA cistrons.  相似文献   

4.
We have detected a DNAseI hypersensitive site in the ribosomal DNA spacer of Xenopus laevis and Xenopus borealis. The site is present in blood and embryonic nuclei of each species. In interspecies hybrids, however, the site is absent in unexpressed borealis rDNA, but is present normally in expressed laevis rDNA. Hypersensitive sites are located well upstream (over lkb) of the pre-ribosomal RNA promoter. Sequencing of the hypersensitive region in borealis rDNA, however, shows extensive homology with the promoter sequence, and with the hypersensitive region in X. laevis. Of two promoter-like duplications in each spacer, only the most upstream copy is associated with hypersensitivity to DNAaseI. Unlike DNAaseI, Endo R. MspI digests the rDNA of laevis blood nuclei at a domain extending downstream from the hypersensitive site to near the 40S promoter. Since the organisation of conserved sequence elements within this "proximal domain" is similar in three Xenopus species whose spacers have otherwise evolved rapidly, we conclude that this domain plays an important role in rDNA function.  相似文献   

5.
We have determined the complete nucleotide sequence of Xenopus laevis 28S rDNA (4110 bp). In order to locate evolutionarily conserved regions within rDNA, we compared the Xenopus 28S sequence to homologous rDNA sequences from yeast, Physarum, and E. coli. Numerous regions of sequence homology are dispersed throughout the entire length of rDNA from all four organisms. These conserved regions have a higher A + T base composition than the remainder of the rDNA. The Xenopus 28S rDNA has nine major areas of sequence inserted when compared to E. coli 23S rDNA. The total base composition of these inserts in Xenopus is 83% G + C, and is generally responsible for the high (66%) G + C content of Xenopus 28S rDNA as a whole. Although the length of the inserted sequences varies, the inserts are found in the same relative positions in yeast 26S, Physarum 26S, and Xenopus 28S rDNAs. In one insert there are 25 bases completely conserved between the various eukaryotes, suggesting that this area is important for eukaryotic ribosomes. The other inserts differ in sequence between species and may or may not play a functional role.  相似文献   

6.
The intergenic spacer region of the Xenopus laevis ribosomal DNA contains multiple elements which are either 60 or 81 base pairs long. Clusters of these elements have previously been shown to act as position- and distance-independent enhancers on an RNA polymerase I promoter when located in cis. By a combination of deletion and linker scanner mutagenesis we show that the sequences essential for enhancer function are located within a 56-base-pair region that is present in both the 60- and 81-base-pair repeats. Within the 56-base-pair region one linker scanner mutation was found to be relatively neutral, suggesting that each enhancer element may be composed of two smaller domains. Each 56-base-pair region appears to be an independent enhancer with multiple enhancers being additive in effect. We review the current evidence concerning the mechanism of action of these enhancers.  相似文献   

7.
Secondary structure maps of long single strands of amplified ribosomal DNA from two closely related species of frogs, Xenopus laevis and X. mulleri, have been compared. The secondary structure pattern of the gene region is identical in both ribosomal DNAs while the patterns in the non-transcribed spacers2 differ. In X. mulleri, the spacer shows an extended region without any secondary structure adjacent to the 28 S ribosomal RNA sequence. In contrast, the same region in the X. laevis spacer has extensive secondary structure. A comparison of secondary structure maps and denaturation maps of these two ribosomal DNAs (Brown et al., 1972) reveals that the portion without secondary structure in the X. mulleri spacer corresponds to an early melting A + T-rich region. As in X. laevis ribosomal DNA, Escherichia coli restriction endonuclease (EcoRI) makes two cuts in each repeating unit of amplified ribosomal DNA from X. mulleri. The position of the cleavage sites is identical in the two species as judged from secondary structure mapping of the two classes of EcoRI fragments generated. The small fragments of X. mulleri ribosomal DNA are homogeneous in size with a duplex molecular weight of 3.0 × 106, and contain about 85% of the 28 S ribosomal RNA gene and about 17% of the 18 S ribosomal RNA gene. The large fragments are heterogeneous in size with molecular weights ranging from 4.2 to 4.9 × 106, and contain the remaining portions of the gene regions and the nontranscribed spacer. Heteroduplexes made between large fragments of different lengths show only deletion loops. The position of these loops indicates that the length heterogeneity resides in the non-transcribed spacer region. Electrophoretic analysis of EcoRI digests of chromosomal ribosomal DNA from X. mulleri demonstrates that this DNA is heterogeneous in length as well.  相似文献   

8.
9.
10.
11.
12.
Denaturation map of the ribosomal DNA of Xenopus laevis   总被引:13,自引:0,他引:13  
  相似文献   

13.
With the aid of a novel poly-dA tailing-partial restriction technique and S1-protection mapping, the 5' terminal coding sequence for the 40S precursor ribosomal RNA of Xenopus laevis has been exactly identified. Since the promoter sequence for the 40S RNA should lie close to its 5' terminal coding sequence, we are able to conclude that the "Bam-Island" sequence reduplication (1) almost certainly represents a promoter reduplication.  相似文献   

14.
We have assayed a series of linker scanner mutants which cover the Xenopus laevis ribosomal gene promoter at approximately ten base pair intervals. All of these mutations adversely affect promoter activity with the exception of one mutation which stimulates activity. Thus, none are neutral. We show that most of the mutations can be partially rescued by ligating a block of enhancer elements upstream of the promoter. In addition, we have made extracts from liver nuclei which produce DNaseI protection footprints over the promoter. Analysis of both strands reveals a prominent footprinting domain from about -5 to -30. However, lesser changes in the digestion pattern are detected over most of the promoter. Previously published analyses have suggested that this promoter might be composed of three functional domains. The experiments presented here suggest that either 1) the three putative domains are so closely arranged that the boundaries are difficult to discern, or 2) the situation is more complex.  相似文献   

15.
16.
17.
18.
The inhibition of human prostatic epithelial cell (MA-160) replication by cAMP and certain analogs was explored in tissue cultures. When untreated fetal bovine serum was used to supplement the culture medium, cyclic AMP (cAMP) markedly inhibited cell growth. The inhibition was reversed by equimolar concentrations of uridine. Inhibition by 8-methyl-thio-cAMP (MES) was somewhat less effective and was not reversed by uridine. After heat treatment of the fetal bovine serum, which inactivated the cAMP phosphodiesterases, cAMP became less effective in cell growth inhibition, whereas the activity of MES remained unaltered. Dibutyryl cAMP (db-cAMP) had no effect on cell growth, however, when combined with the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine (MIX), significant retardation of cell replication was observed. Cells treated for 24 h with 0.5 mM MES took up and incorporated significantly less [3H]TdR and [3H]uridine than control cells. Treatment of cells with 0.5 mM cAMP for 24 h, on the other hand, resulted in both substantially increased [3H]TdR uptake and increased [3H]uridine incorporation into RNA. The effects of similar treatment with db-cAMP plus MIX closely paralleled those of MES with marked inhibition of the uptake and incorporation of both thymidine and uridine.  相似文献   

19.
20.
Adrian P. Bird 《Chromosoma》1974,46(4):421-433
A technique for the isolation of very high molecular weight rDNA1 from the ovary of Xenopus laevis is described. Tritiated rDNA was prepared by this method from ovaries at the amplification stage, and spread on slides for light microscope autoradiography. The average molecular weight of the spread DNA was greater than 180×106 daltons. Unlike chromosomal DNA grain tracks, rDNA tracks after 2 or 4 hours of labelling were not tandemly arranged. By allowing ovaries to equilibrate gradually with exogenous precursors, tracks showing a single gradient of grain density were produced, indicating that replication was proceeding in one direction at these sites. Bidirectional initiations, if they occur at all during amplification, are rare. The rate of rDNA chain growth is 10.5 μ/hour at 23° C, which is the same as the rate for chromosomal DNA synthesis in X. laevis. After 24 hours some tracks are over 200 μ long, suggesting that replication at a site may be continuous for at least this period. Although they do not distinguish between several alternative mechanisms, the results are compatible with a rolling circle mechanism for gene amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号